IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v33y2000i3p291-298.html
   My bibliography  Save this article

Continuous representability of homothetic preferences by means of homogeneous utility functions

Author

Listed:
  • Bosi, Gianni
  • Candeal, Juan Carlos
  • Indurain, Esteban

Abstract

No abstract is available for this item.

Suggested Citation

  • Bosi, Gianni & Candeal, Juan Carlos & Indurain, Esteban, 2000. "Continuous representability of homothetic preferences by means of homogeneous utility functions," Journal of Mathematical Economics, Elsevier, vol. 33(3), pages 291-298, April.
  • Handle: RePEc:eee:mateco:v:33:y:2000:i:3:p:291-298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(99)00030-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dow, James & da Costa Werlang, Sergio Ribeiro, 1992. "Homothetic preferences," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 389-394.
    2. Monteiro, Paulo Klinger, 1987. "Some results on the existence of utility functions on path connected spaces," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 147-156, April.
    3. Chipman, John S., 1974. "Homothetic preferences and aggregation," Journal of Economic Theory, Elsevier, vol. 8(1), pages 26-38, May.
    4. Aczel, Janos & Moszner, Zenon, 1994. "New results on 'scale' and 'size' arguments justifying invariance properties of empirical indices and laws," Mathematical Social Sciences, Elsevier, vol. 28(1), pages 3-33, August.
    5. Candeal, J. C. & Indurain, E., 1995. "Homothetic and weakly homothetic preferences," Journal of Mathematical Economics, Elsevier, vol. 24(2), pages 147-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. C. R. Alcantud & G. Bosi & C. Rodríguez-Palmero & M. Zuanon, 2003. "The relationship between Mathematical Utility Theory and the Integrability Problem: some arguments in favour," Microeconomics 0308002, EconWPA.
    2. Claudio Zoli, 2012. "Characterizing Inequality Equivalence Criteria," Working Papers 32/2012, University of Verona, Department of Economics.
    3. Miyake, Mitsunobu, 2016. "Logarithmically homogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 1-9.
    4. Bosi, Gianni & Zuanon, Magali E., 2003. "Continuous representability of homothetic preorders by means of sublinear order-preserving functions," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 333-341, July.
    5. Marco, Mariotti & Roberto, Veneziani, 2012. "Opportunities as chances: maximising the probability that everybody succeeds," MPRA Paper 41884, University Library of Munich, Germany.
    6. Gianni Bosi, 2002. "Semicontinuous Representability of Homothetic Interval Orders by Means of Two Homogeneous Functionals," Theory and Decision, Springer, vol. 52(4), pages 303-312, June.
    7. Marc Le Menestrel & Bertrand Lemaire, 2004. "Biased quantitative measurement of interval ordered homothetic preferences," Economics Working Papers 789, Department of Economics and Business, Universitat Pompeu Fabra.
    8. Claudia Meo, 2015. "Cooperative Solutions for Large Economies with Asymmetric Information," Metroeconomica, Wiley Blackwell, vol. 66(1), pages 71-90, February.
    9. Juan Candeal, 2012. "Subgroup independence conditions on preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 847-853, October.
    10. Bosi, Gianni & Campion, Maria J. & Candeal, Juan C. & Indurain, Esteban & Zuanon, Magali E., 2007. "Isotonies on ordered cones through the concept of a decreasing scale," Mathematical Social Sciences, Elsevier, vol. 54(2), pages 115-127, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:33:y:2000:i:3:p:291-298. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.