IDEAS home Printed from https://ideas.repec.org/r/eee/jotrge/v28y2013icp124-136.html
   My bibliography  Save this item

Pedestrian environment and route choice: evidence from New York City and Hong Kong

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
  2. Shatu, Farjana & Yigitcanlar, Tan, 2018. "Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH," Journal of Transport Geography, Elsevier, vol. 70(C), pages 148-160.
  3. Delso, Javier & Martín, Belén & Ortega, Emilio, 2018. "A new procedure using network analysis and kernel density estimations to evaluate the effect of urban configurations on pedestrian mobility. The case study of Vitoria –Gasteiz," Journal of Transport Geography, Elsevier, vol. 67(C), pages 61-72.
  4. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
  5. Loo, Becky P.Y., 2021. "Walking towards a happy city," Journal of Transport Geography, Elsevier, vol. 93(C).
  6. Calvin P Tribby & Harvey J Miller & Barbara B Brown & Carol M Werner & Ken R Smith, 2017. "Analyzing walking route choice through built environments using random forests and discrete choice techniques," Environment and Planning B, , vol. 44(6), pages 1145-1167, November.
  7. Liu, Yanan & Yang, Dujuan & Timmermans, Harry J.P. & de Vries, Bauke, 2020. "Analysis of the impact of street-scale built environment design near metro stations on pedestrian and cyclist road segment choice: A stated choice experiment," Journal of Transport Geography, Elsevier, vol. 82(C).
  8. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
  9. Rao, Fujie & Pafka, Elek, 2021. "Shopping morphologies of urban transit station areas: A comparative study of central city station catchments in Toronto, San Francisco, and Melbourne," Journal of Transport Geography, Elsevier, vol. 96(C).
  10. Bo-Sin Tang & Kenneth KH Wong & Kenneth SS Tang & Siu Wai Wong, 2021. "Walking accessibility to neighbourhood open space in a multi-level urban environment of Hong Kong," Environment and Planning B, , vol. 48(5), pages 1340-1356, June.
  11. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
  12. Lingzhu Zhang & Alain JF Chiaradia, 2022. "Walking in the cities without ground, how 3d complex network volumetrics improve analysis," Environment and Planning B, , vol. 49(7), pages 1857-1874, September.
  13. Somin Lee & Myeong-Hun Lee, 2021. "Impact of Neighborhood Environment on Pedestrian Route Selection among Elementary Schoolchildren in Korea," IJERPH, MDPI, vol. 18(13), pages 1-15, July.
  14. Shahhoseini, Zahra & Sarvi, Majid, 2019. "Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 57-87.
  15. Sevtsuk, Andres & Basu, Rounaq, 2022. "The role of turns in pedestrian route choice: A clarification," Journal of Transport Geography, Elsevier, vol. 102(C).
  16. Su, Shiliang & Zhou, Hao & Xu, Mengya & Ru, Hu & Wang, Wen & Weng, Min, 2019. "Auditing street walkability and associated social inequalities for planning implications," Journal of Transport Geography, Elsevier, vol. 74(C), pages 62-76.
  17. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
  18. Amy Spring & Elizabeth Ackert & Kyle Crowder & Scott J. South, 2017. "Influence of Proximity to Kin on Residential Mobility and Destination Choice: Examining Local Movers in Metropolitan Areas," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1277-1304, August.
  19. Mona Jabbari & Fernando Fonseca & Rui Ramos, 2018. "Combining multi-criteria and space syntax analysis to assess a pedestrian network: the case of Oporto," Journal of Urban Design, Taylor & Francis Journals, vol. 23(1), pages 23-41, January.
  20. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Objective vs. subjective measures of street environments in pedestrian route choice behaviour: Discrepancy and correlates of non-concordance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 1-23.
  21. Ivan Blečić & Tanja Congiu & Giovanna Fancello & Giuseppe Andrea Trunfio, 2020. "Planning and Design Support Tools for Walkability: A Guide for Urban Analysts," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
  22. Sarjala, Satu, 2019. "Built environment determinants of pedestrians’ and bicyclists’ route choices on commute trips: Applying a new grid-based method for measuring the built environment along the route," Journal of Transport Geography, Elsevier, vol. 78(C), pages 56-69.
  23. Mona Jabbari & Fernando Fonseca & Rui Ramos, 2021. "Accessibility and Connectivity Criteria for Assessing Walkability: An Application in Qazvin, Iran," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
  24. Basu, Rounaq & Sevtsuk, Andres, 2022. "How do street attributes affect willingness-to-walk? City-wide pedestrian route choice analysis using big data from Boston and San Francisco," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 1-19.
  25. Clifton, Kelly J. & Singleton, Patrick A. & Muhs, Christopher D. & Schneider, Robert J., 2016. "Representing pedestrian activity in travel demand models: Framework and application," Journal of Transport Geography, Elsevier, vol. 52(C), pages 111-122.
  26. Sweet, Matthias N., 2014. "Do firms flee traffic congestion?," Journal of Transport Geography, Elsevier, vol. 35(C), pages 40-49.
  27. Sangwan Lee, 2022. "Satisfaction with the Pedestrian Environment and Its Relationship to Neighborhood Satisfaction in Seoul, South Korea," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
  28. Gehrke, Steven R. & Wang, Liming, 2020. "Operationalizing the neighborhood effects of the built environment on travel behavior," Journal of Transport Geography, Elsevier, vol. 82(C).
  29. Fancello, Giovanna & Congiu, Tanja & Tsoukiàs, Alexis, 2020. "Mapping walkability. A subjective value theory approach," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
  30. Le Pira, Michela & Marcucci, Edoardo & Gatta, Valerio, 2021. "Roman holiday: Tourist heterogeneous preferences for walking path elements," Research in Transportation Economics, Elsevier, vol. 90(C).
  31. Mendiate, Classio Joao & Nkurunziza, Alphonse & Machanguana, Constancio Augusto & Bernardo, Roberto, 2022. "Pedestrian travel behaviour and urban form: Comparing two small Mozambican cities," Journal of Transport Geography, Elsevier, vol. 98(C).
  32. Budnitz, Hannah & Meelen, Toon & Schwanen, Tim, 2022. "Residential Neighbourhood Charging of Electric Vehicles: an exploration of user preferences," SocArXiv fsv7n, Center for Open Science.
  33. Barber, Lachlan B., 2020. "Governing uneven mobilities: Walking and hierarchized circulation in Hong Kong," Journal of Transport Geography, Elsevier, vol. 82(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.