My bibliography
Save this item
Grabit: Gradient tree-boosted Tobit models for default prediction
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
- Longyue Liang & Bo Liu & Zhi Su & Xuanye Cai, 2024. "Forecasting corporate financial performance with deep learning and interpretable ALE method: Evidence from China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2540-2571, November.
- Jingjing Long & Cuiqing Jiang & Stanko Dimitrov & Zhao Wang, 2022. "Clues from networks: quantifying relational risk for credit risk evaluation of SMEs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-41, December.
- Li, Huan & Wu, Weixing, 2024. "Loan default predictability with explainable machine learning," Finance Research Letters, Elsevier, vol. 60(C).
- Hoang Hiep Nguyen & Jean-Laurent Viviani & Sami Ben Jabeur, 2023. "Bankruptcy prediction using machine learning and Shapley additive explanations," Post-Print hal-04223161, HAL.
- Durongkadej, Isarin & Hu, Wenyao & Wang, Heng Emily, 2024. "How artificial intelligence incidents affect banks and financial services firms? A study of five firms," Finance Research Letters, Elsevier, vol. 70(C).
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- García-Céspedes, Rubén & Moreno, Manuel, 2022. "The generalized Vasicek credit risk model: A Machine Learning approach," Finance Research Letters, Elsevier, vol. 47(PA).
- Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
- Jan Svanberg & Tohid Ardeshiri & Isak Samsten & Peter Öhman & Presha E. Neidermeyer & Tarek Rana & Natalia Semenova & Mats Danielson, 2022. "Corporate governance performance ratings with machine learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(1), pages 50-68, January.
- Alonso-Robisco, Andrés & Carbó, José Manuel, 2022. "Can machine learning models save capital for banks? Evidence from a Spanish credit portfolio," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Pascal Kundig & Fabio Sigrist, 2024. "A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios," Papers 2410.02846, arXiv.org.
- Königstorfer, Florian & Thalmann, Stefan, 2020. "Applications of Artificial Intelligence in commercial banks – A research agenda for behavioral finance," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Moritz Schneider & Rolf Brühl, 2023. "Disentangling the black box around CEO and financial information-based accounting fraud detection: machine learning-based evidence from publicly listed U.S. firms," Journal of Business Economics, Springer, vol. 93(9), pages 1591-1628, November.
- Nicoleta Bărbuță-Mișu & Mara Madaleno, 2020. "Assessment of Bankruptcy Risk of Large Companies: European Countries Evolution Analysis," JRFM, MDPI, vol. 13(3), pages 1-28, March.
- He, Yunwen, 2021. "Using your regular contacts as collateral: The information value of call logs," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
- Paritosh Navinchandra Jha & Marco Cucculelli, 2021. "A New Model Averaging Approach in Predicting Credit Risk Default," Risks, MDPI, vol. 9(6), pages 1-15, June.
- Patrick Weber & K. Valerie Carl & Oliver Hinz, 2024. "Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature," Management Review Quarterly, Springer, vol. 74(2), pages 867-907, June.
- Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
- Xiaoshan Su & Manying Bai, 2020. "Stochastic gradient boosting frequency-severity model of insurance claims," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
- Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Brezigar-Masten, Arjana & Masten, Igor & Volk, Matjaž, 2021. "Modelin-g credit risk with a Tobit model of days past due," Journal of Banking & Finance, Elsevier, vol. 122(C).
- Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
- Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Cedric H. A. Koffi & Viani Biatat Djeundje & Olivier Menoukeu Pamen, 2024. "Impact of social factors on loan delinquency in microfinance," Papers 2410.13100, arXiv.org.