IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v66y2014icp643-653.html
   My bibliography  Save this item

Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied natural gas)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Battisti, Felipe G. & Cardemil, José M. & da Silva, Alexandre K., 2016. "A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid," Energy, Elsevier, vol. 112(C), pages 908-916.
  2. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis)," Energy, Elsevier, vol. 86(C), pages 423-435.
  3. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2016. "Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy," Energy, Elsevier, vol. 95(C), pages 324-345.
  4. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
  5. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
  6. Lee, Su Won & Kwon, Jin Gyu & Kim, Moo Hwan & Jo, HangJin, 2021. "Cycle analysis and economic evaluation for seawater-LNG Organic Rankine Cycles," Energy, Elsevier, vol. 234(C).
  7. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
  8. Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2022. "Thermodynamic efficiency of subcritical and transcritical power cycles utilizing selected ACZ working fluids," Energy, Elsevier, vol. 254(PA).
  9. Luo, Xianglong & Wang, Yupeng & Liang, Junwei & Qi, Ji & Su, Wen & Yang, Zhi & Chen, Jianyong & Wang, Chao & Chen, Ying, 2019. "Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical Organic Rankine Cycle," Energy, Elsevier, vol. 174(C), pages 122-137.
  10. Allahyarzadeh-Bidgoli, Ali & Dezan, Daniel Jonas & Salviano, Leandro Oliveira & de Oliveira Junior, Silvio & Yanagihara, Jurandir Itizo, 2019. "FPSO fuel consumption and hydrocarbon liquids recovery optimization over the lifetime of a deep-water oil field," Energy, Elsevier, vol. 181(C), pages 927-942.
  11. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
  12. Liu, Yang & Han, Jitian & You, Huailiang, 2020. "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture," Energy, Elsevier, vol. 190(C).
  13. Zhao, Liang & Dong, Hui & Tang, Jiajun & Cai, Jiuju, 2016. "Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 105(C), pages 45-56.
  14. Amini, Ali & Mirkhani, Nima & Pakjesm Pourfard, Pedram & Ashjaee, Mehdi & Khodkar, Mohammad Amin, 2015. "Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle," Energy, Elsevier, vol. 86(C), pages 74-84.
  15. Tesch, Stefanie & Morosuk, Tatiana & Tsatsaronis, George, 2016. "Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process," Energy, Elsevier, vol. 117(P2), pages 550-561.
  16. Freire-Gormaly, M. & Bilton, A.M., 2019. "Design of photovoltaic powered reverse osmosis desalination systems considering membrane fouling caused by intermittent operation," Renewable Energy, Elsevier, vol. 135(C), pages 108-121.
  17. Sun, Zhixin & Lai, Jianpeng & Wang, Shujia & Wang, Tielong, 2018. "Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures," Energy, Elsevier, vol. 147(C), pages 688-700.
  18. Özen, Dilek Nur & Koçak, Betül, 2022. "Advanced exergy and exergo-economic analyses of a novel combined power system using the cold energy of liquefied natural gas," Energy, Elsevier, vol. 248(C).
  19. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
  20. Zhang, Minglong & Chen, Hong & Zoghi, Mohammad & Habibi, Hamed, 2022. "Comparison between biogas and pure methane as the fuel of a polygeneration system including a regenerative gas turbine cycle and partial cooling supercritical CO2 Brayton cycle: 4E analysis and tri-ob," Energy, Elsevier, vol. 257(C).
  21. Zonouz, Masood Jalali & Mehrpooya, Mehdi, 2017. "Parametric study of a hybrid one column air separation unit (ASU) and CO2 power cycle based on advanced exergy cost analysis results," Energy, Elsevier, vol. 140(P1), pages 261-275.
  22. Igobo, Opubo N. & Davies, Philip A., 2014. "Review of low-temperature vapour power cycle engines with quasi-isothermal expansion," Energy, Elsevier, vol. 70(C), pages 22-34.
  23. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Yu, Chao, 2015. "Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques," Energy, Elsevier, vol. 90(P1), pages 864-878.
  24. Khan, Mohd Shariq & I.A. Karimi, & Bahadori, Alireza & Lee, Moonyong, 2015. "Sequential coordinate random search for optimal operation of LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 89(C), pages 757-767.
  25. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
  26. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).
  27. Kouta, Amine & Al-Sulaiman, Fahad A. & Atif, Maimoon, 2017. "Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system," Energy, Elsevier, vol. 119(C), pages 996-1009.
  28. Samaké, Oumar & Galanis, Nicolas & Sorin, Mikhail, 2014. "Thermodynamic study of multi-effect thermal vapour-compression desalination systems," Energy, Elsevier, vol. 72(C), pages 69-79.
  29. Romero Gómez, Manuel & Romero Gómez, Javier & López-González, Luis M. & López-Ochoa, Luis M., 2016. "Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture," Energy, Elsevier, vol. 105(C), pages 32-44.
  30. Naseri, Ali & Bidi, Mokhtar & Ahmadi, Mohammad H., 2017. "Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink," Renewable Energy, Elsevier, vol. 113(C), pages 1215-1228.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.