IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v46y2012i1p85-93.html
   My bibliography  Save this item

Sustainable assessment of solar hydrogen production techniques

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
  2. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
  3. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
  4. García, Lázaro & González, Daniel & García, Carlos & García, Laura & Brayner, Carlos, 2013. "Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)," Energy, Elsevier, vol. 57(C), pages 469-477.
  5. Metin Gül & Ersin Akyüz, 2020. "Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification," Energies, MDPI, vol. 13(11), pages 1-20, June.
  6. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
  7. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
  8. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
  9. Açıkkalp, Emin, 2015. "Exergetic sustainability evaluation of irreversible Carnot refrigerator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 311-320.
  10. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
  11. Orhan, Mehmet F. & Babu, Binish S., 2015. "Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: Comparative evaluation of hydrogen production options with a regenerative fuel cell system," Energy, Elsevier, vol. 88(C), pages 801-820.
  12. Sánchez-Squella, Antonio & Flores, Ricardo & Burgos, Rolando & Morales, Felipe & Nader, Andrés & Valdivia-Lefort, Patricio, 2024. "99.6% efficiency DC-DC coupling for green hydrogen production using PEM electrolyzer, photovoltaic generation and battery storage operating in an off-grid area," Renewable Energy, Elsevier, vol. 237(PC).
  13. Machado, R.G. & Moreira, F.S. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2018. "Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation," Energy, Elsevier, vol. 153(C), pages 861-869.
  14. Assaf, Jihane & Shabani, Bahman, 2018. "Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: Towards 100% renewable heat and power supply to standalone applications," Energy, Elsevier, vol. 157(C), pages 862-876.
  15. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2016. "On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II)," Energy, Elsevier, vol. 96(C), pages 507-520.
  16. Meyer, Markus A. & Weiss, Annika, 2014. "Life cycle costs for the optimized production of hydrogen and biogas from microalgae," Energy, Elsevier, vol. 78(C), pages 84-93.
  17. Dalkıran, Alper & Açıkkalp, Emin & Caner, Necmettin, 2016. "Analysis of a quantum irreversible Otto cycle with exergetic sustainable index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 316-326.
  18. Vipulesh Shardeo & Bishal Dey Sarkar, 2024. "Adoption of hydrogen‐fueled freight transportation: A strategy toward sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 223-240, February.
  19. Valdés, R. & Lucio, J.H. & Rodríguez, L.R., 2013. "Operational simulation of wind power plants for electrolytic hydrogen production connected to a distributed electricity generation grid," Renewable Energy, Elsevier, vol. 53(C), pages 249-257.
  20. Scozzari, R. & Santarelli, M., 2014. "Techno-economic analysis of a small size short range EES (electric energy storage) system for a PV (photovoltaic) plant serving a SME (small and medium enterprise) in a given regulatory context," Energy, Elsevier, vol. 71(C), pages 180-193.
  21. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
  22. Cocco, Daniele & Serra, Fabio & Tola, Vittorio, 2013. "Assessment of energy and economic benefits arising from syngas storage in IGCC power plants," Energy, Elsevier, vol. 58(C), pages 635-643.
  23. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun & Scipioni, Antonio & Mazzi, Anna, 2015. "Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1217-1229.
  24. Liu, Xianyang & Zou, Jun & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system," Renewable Energy, Elsevier, vol. 216(C).
  25. Liu, Xianyang & Zhu, Tianyu & Wei, Zhihao & Cai, Shanshan & Long, Rui & Liu, Zhichun, 2025. "Performance analysis of a novel solar-to-hydrogen system with energy storage via machine learning and particle swarm optimization," Energy, Elsevier, vol. 315(C).
  26. Guo, Yuwei & Li, Yun & Li, Shuguang & Zhang, Lei & Li, Ying & Wang, Jun, 2015. "Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for hydrogen evolution from aqueous methanol solut," Energy, Elsevier, vol. 82(C), pages 72-79.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.