IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v34y2009i8p1032-1041.html
   My bibliography  Save this item

Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ahamad, Mazbahul & Tanin, Fahian, 2013. "Next power generation-mix for Bangladesh: Outlook and policy priorities," Energy Policy, Elsevier, vol. 60(C), pages 272-283.
  2. Mita Bhattacharya & Hooi Hooi Lean & Sankar Bhattacharya, 2014. "Economic Growth, Coal Demand, Carbon Dioxide Emissions: Empirical Findings from India with Policy Implications," Monash Economics Working Papers 47-14, Monash University, Department of Economics.
  3. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.
  4. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
  5. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
  6. Jung, Jung-Yeul & Huh, Cheol & Kang, Seong-Gil & Seo, Youngkyun & Chang, Daejun, 2013. "CO2 transport strategy and its cost estimation for the offshore CCS in Korea," Applied Energy, Elsevier, vol. 111(C), pages 1054-1060.
  7. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
  8. Lahiri-Dutt, Kuntala, 2016. "The diverse worlds of coal in India: Energising the nation, energising livelihoods," Energy Policy, Elsevier, vol. 99(C), pages 203-213.
  9. Ramachandra, T.V. & Shwetmala,, 2012. "Decentralised carbon footprint analysis for opting climate change mitigation strategies in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5820-5833.
  10. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
  11. Zhang, Kai & Lau, Hon Chung & Bokka, Harsha Kumar & Hadia, Nanji J., 2022. "Decarbonizing the power and industry sectors in India by carbon capture and storage," Energy, Elsevier, vol. 249(C).
  12. Vishal, V. & Singh, Lokendra & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2013. "Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration," Energy, Elsevier, vol. 49(C), pages 384-394.
  13. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
  14. Sara Restrepo-Valencia & Arnaldo Walter, 2023. "CO 2 Capture in a Thermal Power Plant Using Sugarcane Residual Biomass," Energies, MDPI, vol. 16(12), pages 1-19, June.
  15. Li, Yingjie & Zhao, Changsui & Chen, Huichao & Ren, Qiangqiang & Duan, Lunbo, 2011. "CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle," Energy, Elsevier, vol. 36(3), pages 1590-1598.
  16. Kalimuthu, Selvam & Karmakar, Sujit & Kolar, Ajit Kumar, 2017. "3-E analysis of a Pressurized Pulverized Combined Cycle (PPCC) power plant using high ash Indian coal," Energy, Elsevier, vol. 128(C), pages 634-648.
  17. Gambhir, Ajay & Napp, Tamaryn A. & Emmott, Christopher J.M. & Anandarajah, Gabrial, 2014. "India's CO2 emissions pathways to 2050: Energy system, economic and fossil fuel impacts with and without carbon permit trading," Energy, Elsevier, vol. 77(C), pages 791-801.
  18. Nandakumar Janardhanan & Kentaro Tamura, 2020. "The Sociopolitical Dynamics of Coal Transition in India," International Studies, , vol. 57(2), pages 171-185, April.
  19. Wang, Kai-Hua & Zhao, Yan-Xin & Su, Yun Hsuan & Lobonţ, Oana-Ramona, 2023. "Energy security and CO2 emissions: New evidence from time-varying and quantile-varying aspects," Energy, Elsevier, vol. 273(C).
  20. Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
  21. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
  22. Lee, Zhi Hua & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2012. "Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2599-2609.
  23. Liu, Hengwei & Liang, Xi, 2011. "Strategy for promoting low-carbon technology transfer to developing countries: The case of CCS," Energy Policy, Elsevier, vol. 39(6), pages 3106-3116, June.
  24. Anoop Kumar Shukla & Zoheb Ahmad & Meeta Sharma & Gaurav Dwivedi & Tikendra Nath Verma & Siddharth Jain & Puneet Verma & Ali Zare, 2020. "Advances of Carbon Capture and Storage in Coal-Based Power Generating Units in an Indian Context," Energies, MDPI, vol. 13(16), pages 1-17, August.
  25. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
  26. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
  27. Al-Salem, S.M., 2015. "Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view," Energy, Elsevier, vol. 81(C), pages 575-587.
  28. Aleksei V. Bogoviz & Yulia V. Ragulina & Svetlana V. Lobova & Alexander N. Alekseev, 2019. "A quantitative Analysis of Energy Security Performance by Brazil, Russia, India, China, and South Africa in 1990-2015," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 244-250.
  29. Garg, Amit & Maheshwari, Jyoti & Mahapatra, Diptiranjan & Kumar, Satish, 2011. "Economic and environmental implications of demand-side management options," Energy Policy, Elsevier, vol. 39(6), pages 3076-3085, June.
  30. Bhattacharya, Mita & Rafiq, Shuddhasattwa & Lean, Hooi Hooi & Bhattacharya, Sankar, 2017. "The regulated coal sector and CO2 emissions in Indian growth process: Empirical evidence over half a century and policy suggestions," Applied Energy, Elsevier, vol. 204(C), pages 667-678.
  31. Sivek, Martin & Jirásek, Jakub & Kavina, Pavel & Vojnarová, Markéta & Kurková, Tereza & Bašová, Andrea, 2020. "Divorce after hundreds of years of marriage: Prospects for coal mining in the Czech Republic with regard to the European Union," Energy Policy, Elsevier, vol. 142(C).
  32. Lucas, Paul L. & Shukla, P.R. & Chen, Wenying & van Ruijven, Bas J. & Dhar, Subash & den Elzen, Michel G.J. & van Vuuren, Detlef P., 2013. "Implications of the international reduction pledges on long-term energy system changes and costs in China and India," Energy Policy, Elsevier, vol. 63(C), pages 1032-1041.
  33. Sinha, Avik, 2014. "Carbon Emissions and Mortality Rates: A Causal Analysis for India (1971-2010)," MPRA Paper 102263, University Library of Munich, Germany, revised 2014.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.