IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v148y2015icp396-402.html
   My bibliography  Save this article

A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant

Author

Listed:
  • Jacob, Amita
  • Xia, Ao
  • Murphy, Jerry D.

Abstract

There are significant resources of coal on the planet. It is likely that a lot of this coal will be combusted. A 1GWe coal power plant operating at 35% electrical efficiency and a capacity factor of 75% produces 6.77 million tonnes of CO2 per annum. A closed cultivation system with a carbon capture efficiency of 80% allows production of 2.69Mt of micro-algal (volatile solids), in a foot print of 19,200ha for a tubular photo-bioreactor (PBR) and 34,000ha for a Flat Plate PBR. An open system (raceway pond) at a carbon capture efficiency of 50% produces 1.68Mt of micro-algal (volatile solids) and requires a footprint of 52,303ha. Employing a three stage sequential process (combining dark fermentation, photo fermentation and anaerobic digestion) to produce bio-hydrogen and bio-methane from the micro-algae could potentially generate 35% of the primary energy in the coal in the form of renewable gaseous fuel if a closed system of cultivation is used. This is sufficient to fuel 600,000 cars per annum. In the cultivation of micro-algae, pumping and circulation is a considerable parasitic energy demand. The ratio of energy output (gaseous biofuel) to energy input (pumping and circulation) is less than 1 for all the three cultivation systems assessed, ranging from 0.71 for raceway ponds to 0.05 for a tubular PBR. If coal powered electricity is the source of this parasitic energy then a tubular PBR system produces more CO2 than the CO2 captured by the micro-algae.

Suggested Citation

  • Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
  • Handle: RePEc:eee:appene:v:148:y:2015:i:c:p:396-402
    DOI: 10.1016/j.apenergy.2015.03.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915003694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    2. Markou, Giorgos & Georgakakis, Dimitris, 2011. "Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review," Applied Energy, Elsevier, vol. 88(10), pages 3389-3401.
    3. Phukan, Mayur M. & Chutia, Rahul S. & Konwar, B.K. & Kataki, R., 2011. "Microalgae Chlorella as a potential bio-energy feedstock," Applied Energy, Elsevier, vol. 88(10), pages 3307-3312.
    4. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    5. Pires, J.C.M. & Alvim-Ferraz, M.C.M. & Martins, F.G. & Simões, M., 2012. "Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3043-3053.
    6. Jonker, J.G.G. & Faaij, A.P.C., 2013. "Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production," Applied Energy, Elsevier, vol. 102(C), pages 461-475.
    7. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    8. Unido, 2014. "World Statistics on Mining and Utilities 2014," Books, Edward Elgar Publishing, number 15926.
    9. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    10. Garg, Amit & Shukla, P.R., 2009. "Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)," Energy, Elsevier, vol. 34(8), pages 1032-1041.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    2. Soleimani, Reza & Abooali, Danial & Shoushtari, Navid Alavi, 2018. "Characterizing CO2 capture with aqueous solutions of LysK and the mixture of MAPA + DEEA using soft computing methods," Energy, Elsevier, vol. 164(C), pages 664-675.
    3. Ding, Lingkan & Chan Gutierrez, Enrique & Cheng, Jun & Xia, Ao & O'Shea, Richard & Guneratnam, Amita Jacob & Murphy, Jerry D., 2018. "Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate," Energy, Elsevier, vol. 151(C), pages 760-770.
    4. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    2. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    3. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    4. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    5. Meneses-Reyes, José Carlos & Hernández-Eugenio, Guadalupe & Huber, David H. & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2018. "Oil-extracted Chlorella vulgaris biomass and glycerol bioconversion to methane via continuous anaerobic co-digestion with chicken litter," Renewable Energy, Elsevier, vol. 128(PA), pages 223-229.
    6. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    7. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    8. Nikannapas Usmanbaha & Rattana Jariyaboon & Alissara Reungsang & Prawit Kongjan & Chen-Yeon Chu, 2019. "Optimization of Batch Dark Fermentation of Chlorella sp. Using Mixed-Cultures for Simultaneous Hydrogen and Butyric Acid Production," Energies, MDPI, vol. 12(13), pages 1-14, July.
    9. Jiang, Liling & Luo, Shengjun & Fan, Xiaolei & Yang, Zhiman & Guo, Rongbo, 2011. "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2," Applied Energy, Elsevier, vol. 88(10), pages 3336-3341.
    10. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    11. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    12. Judd, S.J. & Al Momani, F.A.O. & Znad, H. & Al Ketife, A.M.D., 2017. "The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 379-387.
    13. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    14. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    15. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    16. Thorin, Eva & Olsson, Jesper & Schwede, Sebastian & Nehrenheim, Emma, 2018. "Co-digestion of sewage sludge and microalgae – Biogas production investigations," Applied Energy, Elsevier, vol. 227(C), pages 64-72.
    17. Sibi G, 2018. "Bioenergy Production from Wastes by Microalgae as Sustainable Approach for Waste Management and to Reduce Resources Depletion," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 13(3), pages 77-80, July.
    18. Guglielmo Maria Caporale & Juncal Cunado & Luis A. Gil-Alana & Rangan Gupta, 2018. "The relationship between healthcare expenditure and disposable personal income in the US states: a fractional integration and cointegration analysis," Empirical Economics, Springer, vol. 55(3), pages 913-935, November.
    19. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    20. Mendez, Lara & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads," Applied Energy, Elsevier, vol. 129(C), pages 238-242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:148:y:2015:i:c:p:396-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.