IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v28y2003i6p539-556.html

Energy and exergy analyses of solar drying process of pistachio

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
  2. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "A review on energy and exergy analysis of solar dying systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2812-2819.
  3. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
  4. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
  5. Azadbakht, Mohsen & Aghili, Hajar & Ziaratban, Armin & Torshizi, Mohammad Vahedi, 2017. "Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes," Energy, Elsevier, vol. 120(C), pages 947-958.
  6. Heydari, Ali, 2022. "Experimental analysis of hybrid dryer combined with spiral solar air heater and auxiliary heating system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1162-1175.
  7. Marcin Dębowski & Przemysław Bukowski & Przemysław Kobel & Jerzy Bieniek & Leszek Romański & Bernard Knutel, 2021. "Comparison of Energy Consumption of Cereal Grain Dryer Powered by LPG and Hard Coal in Polish Conditions," Energies, MDPI, vol. 14(14), pages 1-17, July.
  8. Ahmad Shakerardekani & Roselina Karim & Hasanah Ghazali & Nyuk Ling Chin, 2011. "Types of Dryers and Their Effect on the Pistachio Nuts Quality-a Review," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 3(4), pages 1-13, November.
  9. Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.
  10. Jankowiak, Lena & Jonkman, Jochem & Rossier-Miranda, Francisco J. & van der Goot, Atze Jan & Boom, Remko M., 2014. "Exergy driven process synthesis for isoflavone recovery from okara," Energy, Elsevier, vol. 74(C), pages 471-483.
  11. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
  12. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
  13. Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
  14. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
  15. Celma, A.R. & Cuadros, F., 2009. "Energy and exergy analyses of OMW solar drying process," Renewable Energy, Elsevier, vol. 34(3), pages 660-666.
  16. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
  17. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
  18. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
  19. Abiodun Okunola & Timothy Adekanye & Endurance Idahosa, 2021. "Energy and exergy analyses of okra drying process in a forced convection cabinet dryer," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 8-16.
  20. Nazghelichi, Tayyeb & Kianmehr, Mohammad Hossein & Aghbashlo, Mortaza, 2010. "Thermodynamic analysis of fluidized bed drying of carrot cubes," Energy, Elsevier, vol. 35(12), pages 4679-4684.
  21. Akyuz, E. & Coskun, C. & Oktay, Z. & Dincer, I., 2012. "A novel approach for estimation of photovoltaic exergy efficiency," Energy, Elsevier, vol. 44(1), pages 1059-1066.
  22. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
  23. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
  24. Nazri, Nurul Syakirah & Fudholi, Ahmad & Mustafa, Wan & Yen, Chan Hoy & Mohammad, Masita & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2019. "Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 132-144.
  25. Yao, Muchi & Li, Ming & Zhang, Yi & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Deng, Zhihan & Xing, Tianyu & Zhu, Yinlong, 2025. "Performance, energy and exergy analysis of solar-assisted heat pump drying system with heat recovery: A comprehensive experimental study," Renewable Energy, Elsevier, vol. 244(C).
  26. Arun, K.R. & Kunal, G. & Srinivas, M. & Kumar, C.S. Sujith & Mohanraj, M. & Jayaraj, S., 2020. "Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage," Energy, Elsevier, vol. 192(C).
  27. Abdallah Elshawadfy Elwakeel & Edwin Villagran & Jader Rodriguez & Cruz Ernesto Aguilar & Atef Fathy Ahmed, 2025. "Development, Thermodynamic Evaluation, and Economic Analysis of a PVT-Based Automated Indirect Solar Dryer for Date Fruits," Sustainability, MDPI, vol. 17(10), pages 1-28, May.
  28. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
  29. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
  30. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
  31. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Estimation of monthly solar radiation distribution for solar energy system analysis," Energy, Elsevier, vol. 36(2), pages 1319-1323.
  32. Lamnatou, Chr. & Papanicolaou, E. & Belessiotis, V. & Kyriakis, N., 2012. "Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector," Applied Energy, Elsevier, vol. 94(C), pages 232-243.
  33. Rismanchi, B. & Saidur, R. & BoroumandJazi, G. & Ahmed, S., 2012. "Energy, exergy and environmental analysis of cold thermal energy storage (CTES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5741-5746.
  34. Tagnamas, Zakaria & Lamsyehe, Hamza & Moussaoui, Haytem & Bahammou, Younes & Kouhila, Mounir & Idlimam, Ali & Lamharrar, Abdelkader, 2021. "Energy and exergy analyses of carob pulp drying system based on a solar collector," Renewable Energy, Elsevier, vol. 163(C), pages 495-503.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.