Development, Thermodynamic Evaluation, and Economic Analysis of a PVT-Based Automated Indirect Solar Dryer for Date Fruits
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bayrak, Fazlı & Aktaş, Mustafa & Aktaş, Ahmet & Şevik, Seyfi & Aktekeli, Burak & Güven, Yaren, 2025. "Analysis of a novel PVT dryer using a sustainable control approach," Renewable Energy, Elsevier, vol. 245(C).
- Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
- Ekka, Jasinta Poonam & Muthukumar, P., 2024. "Exergy efficiency and sustainability indicators of forced convection mixed mode solar dryer system for drying process," Renewable Energy, Elsevier, vol. 234(C).
- Costanza Fiorentino & Paola D’Antonio & Francesco Toscano & Nicola Capece & Luis Alcino Conceição & Emanuele Scalcione & Felice Modugno & Maura Sannino & Roberto Colonna & Emilia Lacetra & Giovanni Di, 2025. "Smart Sensors and Artificial Intelligence Driven Alert System for Optimizing Red Peppers Drying in Southern Italy," Sustainability, MDPI, vol. 17(4), pages 1-21, February.
- Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
- Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
- Karthikeyan, A.K. & Murugavelh, S., 2018. "Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 128(PA), pages 305-312.
- Midilli, A. & Kucuk, H., 2003. "Energy and exergy analyses of solar drying process of pistachio," Energy, Elsevier, vol. 28(6), pages 539-556.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nabil Eldesokey Mansour & Edwin Villagran & Jader Rodriguez & Mohammad Akrami & Jorge Flores-Velazquez & Khaled A. Metwally & M. Alhumedi & Atef Fathy Ahmed & Abdallah Elshawadfy Elwakeel, 2025. "Effect of Drying Conditions on Kinetics, Modeling, and Thermodynamic Behavior of Marjoram Leaves in an IoT-Controlled Vacuum Dryer," Sustainability, MDPI, vol. 17(13), pages 1-33, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lamrani, Bilal & Elmrabet, Yasmine & Mathew, Ibeh & Bekkioui, Naoual & Etim, Promise & Chahboun, Adil & Draoui, Abdeslam & Ndukwu, Macmanus Chinenye, 2022. "Energy, economic analysis and mathematical modelling of mixed-mode solar drying of potato slices with thermal storage loaded V-groove collector: Application to Maghreb region," Renewable Energy, Elsevier, vol. 200(C), pages 48-58.
- Masud, Mahadi Hasan & Himel, Md. Hasibul Hasan & Ahmed, Mim Mashrur & Chowdhury, Sami Ahbab & Dabnichki, Peter, 2024. "Energy, exergy, exergo-economic and exergo-environmental analysis of waste heat-based convective dryer," Energy, Elsevier, vol. 312(C).
- Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.
- Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
- Çiftçi, Erdem & Khanlari, Ataollah & Sözen, Adnan & Aytaç, İpek & Tuncer, Azim Doğuş, 2021. "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation," Renewable Energy, Elsevier, vol. 180(C), pages 410-423.
- Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.
- Abdelrahman, M.A. & Gaheen, Osama A. & Aziz, Mohamed A. & Rashed, Mostafa R. & Ahmed, Mohamed E.A.E., 2025. "Experimental evaluation of recycled aluminum cans solar air heater: Comprehensive 4E assessments," Energy, Elsevier, vol. 316(C).
- Ndukwu, Macmanus Chinenye & Akpan, Godwin & Okeahialam, Azubuike N. & Umoh, John D. & Ubuoh, Emmanuel A. & Benjamine, Uchechukwu G. & Nwachukwu, Chris & Kalu, Confidence A. & Mbanasor, Jude & Wu, Hong, 2023. "A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover," Renewable Energy, Elsevier, vol. 216(C).
- Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
- Yao, Muchi & Li, Ming & Zhang, Yi & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Deng, Zhihan & Xing, Tianyu & Zhu, Yinlong, 2025. "Performance, energy and exergy analysis of solar-assisted heat pump drying system with heat recovery: A comprehensive experimental study," Renewable Energy, Elsevier, vol. 244(C).
- Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
- Pandey, Saurabh & Kumar, Anil & Sharma, Atul, 2024. "Sustainable solar drying: Recent advances in materials, innovative designs, mathematical modeling, and energy storage solutions," Energy, Elsevier, vol. 308(C).
- Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
- Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
- Zhongting Hu & Sheng Zhang & Wenfeng Chu & Wei He & Cairui Yu & Hancheng Yu, 2020. "Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry," Energies, MDPI, vol. 13(17), pages 1-16, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4571-:d:1657647. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4571-d1657647.html