IDEAS home Printed from https://ideas.repec.org/r/eee/empfin/v14y2007i4p564-583.html

Multivariate autoregressive modeling of time series count data using copulas

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mike Vuolo, 2017. "Copula Models for Sociology: Measures of Dependence and Probabilities for Joint Distributions," Sociological Methods & Research, , vol. 46(3), pages 604-648, August.
  2. Eugenio Miravete, 2014. "Testing for complementarities among countable strategies," Empirical Economics, Springer, vol. 46(4), pages 1521-1544, June.
  3. Escribano, Ana & Maggi, Mario, 2019. "Intersectoral default contagion: A multivariate Poisson autoregression analysis," Economic Modelling, Elsevier, vol. 82(C), pages 376-400.
  4. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
  5. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
  6. BAUWENS, Luc & HAUTSCH, Nikolaus, 2003. "Dynamic latent factor models for intensity processes," LIDAM Discussion Papers CORE 2003103, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
  8. Rainer Baule & Bart Frijns & Sebastian Schlie, 2024. "Feedback Trading: The Intraday Case of Retail Derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(9), pages 1487-1507, September.
  9. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
  10. Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.
  11. Ben Omrane, Walid & Heinen, Andréas, 2010. "Public news announcements and quoting activity in the Euro/Dollar foreign exchange market," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2419-2431, November.
  12. repec:hum:wpaper:sfb649dp2011-044 is not listed on IDEAS
  13. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
  14. Arianna Agosto & Paolo Giudici, 2023. "Cyber Risk Contagion," Risks, MDPI, vol. 11(9), pages 1-10, September.
  15. Luc Bauwens & Nikolaus Hautsch, 2006. "Stochastic Conditional Intensity Processes," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 450-493.
  16. Paul Doukhan, 2012. "Comments on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 447-450, September.
  17. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
  18. Marina Gomtsyan & Céline Lévy-Leduc & Sarah Ouadah & Laure Sansonnet & Christophe Bailly & Loïc Rajjou, 2025. "Variable selection in sparse multivariate GLARMA models: application to germination control by environment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(2), pages 291-324, May.
  19. Yang Lu & Christian Gourieroux, 2018. "Negative Binomial Autoregressive Process," Working Papers hal-01730050, HAL.
  20. Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.
  21. González-Rivera, Gloria & Sun, Yingying, 2015. "Generalized autocontours: Evaluation of multivariate density models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 799-814.
  22. Popovic, Gordana C. & Hui, Francis K.C. & Warton, David I., 2018. "A general algorithm for covariance modeling of discrete data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 86-100.
  23. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
  24. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
  25. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
  26. Jung, Robert C. & Liesenfeld, Roman & Richard, Jean-François, 2011. "Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 73-85.
  27. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
  28. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
  29. Ruben Loaiza-Maya & Michael Stanley Smith, 2017. "Variational Bayes Estimation of Discrete-Margined Copula Models with Application to Time Series," Papers 1712.09150, arXiv.org, revised Jul 2018.
  30. Yang Lu & Christian Gourieroux, 2018. "Negative Binomial Autoregressive Process," CEPN Working Papers 2018-01, Centre d'Economie de l'Université de Paris Nord.
  31. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  32. repec:hal:cepnwp:hal-01730050 is not listed on IDEAS
  33. Youngmi Lee & Sangyeol Lee & Dag Tjøstheim, 2018. "Asymptotic normality and parameter change test for bivariate Poisson INGARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 52-69, March.
  34. Luc Bauwens & Nikolaus Hautsch, 2009. "Modelling Financial High Frequency Data Using Point Processes," Springer Books, in: Thomas Mikosch & Jens-Peter Kreiß & Richard A. Davis & Torben Gustav Andersen (ed.), Handbook of Financial Time Series, chapter 41, pages 953-979, Springer.
  35. Kharin, Yuriy & Voloshko, Valeriy, 2025. "Statistical analysis of parsimonious high-order multivariate finite Markov chains based on sufficient statistics," Journal of Multivariate Analysis, Elsevier, vol. 208(C).
  36. Eugenio J. Miravete, 2009. "Competing with Menus of Tariff Options," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 188-205, March.
  37. Heinen, Andréas & Rengifo, Erick, 2008. "Multivariate reduced rank regression in non-Gaussian contexts, using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2931-2944, February.
  38. Cattivelli, Luca & Pirino, Davide, 2019. "A SHARP model of bid–ask spread forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1211-1225.
  39. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
  40. Darolles, Serge & Fol, Gaëlle Le & Lu, Yang & Sun, Ran, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 181-203.
  41. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
  42. Yicheng Song & Nachiketa Sahoo & Shuba Srinivasan & Chrysanthos Dellarocas, 2022. "Uncovering Characteristic Response Paths of a Population," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1661-1680, May.
  43. Mirko Armillotta & Konstantinos Fokianos, 2024. "Count network autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 584-612, July.
  44. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
  45. Bracher, Johannes & Held, Leonhard, 2022. "Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1221-1233.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.