IDEAS home Printed from
   My bibliography  Save this article

Bivariate binomial autoregressive models


  • Scotto, Manuel G.
  • Weiß, Christian H.
  • Silva, Maria Eduarda
  • Pereira, Isabel


This paper introduces new classes of bivariate time series models being useful to fit count data time series with a finite range of counts. Motivation comes mainly from the comparison of schemes for monitoring tourism demand, stock data, production and environmental processes. All models are based on the bivariate binomial distribution of Type II. First, a new family of bivariate integer-valued GARCH models is proposed. Then, a new bivariate thinning operation is introduced and explained in detail. The new thinning operation has a number of advantages including the fact that marginally it behaves as the usual binomial thinning operation and also that allows for both positive and negative cross-correlations. Based upon this new thinning operation, a bivariate extension of the binomial autoregressive model of order one is introduced. Basic probabilistic and statistical properties of the model are discussed. Parameter estimation and forecasting are also covered. The performance of these models is illustrated through an empirical application to a set of rainy days time series collected from 2000 up to 2010 in the German cities of Bremen and Cuxhaven.

Suggested Citation

  • Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
  • Handle: RePEc:eee:jmvana:v:125:y:2014:i:c:p:233-251
    DOI: 10.1016/j.jmva.2013.12.014

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Kurt Brannas & A. M. M. Shahiduzzaman Quoreshi, 2010. "Integer-valued moving average modelling of the number of transactions in stocks," Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1429-1440.
    3. Zhou, J. & Basawa, I.V., 2005. "Least-squares estimation for bifurcating autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 77-88, August.
    4. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    5. René Ferland & Alain Latour & Driss Oraichi, 2006. "Integer-Valued GARCH Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 923-942, November.
    6. Biswas, Atanu & Hwang, Jing-Shiang, 2002. "A new bivariate binomial distribution," Statistics & Probability Letters, Elsevier, vol. 60(2), pages 231-240, November.
    7. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    8. Christian H. Weiß & Philip K. Pollett, 2012. "Chain Binomial Models and Binomial Autoregressive Processes," Biometrics, The International Biometric Society, vol. 68(3), pages 815-824, September.
    9. Quoreshi, Shahiduzzaman, 2005. "Bivariate Time Series Modelling of Financial Count Data," Umeå Economic Studies 655, Umeå University, Department of Economics.
    10. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    11. Jonas Andersson & Dimitris Karlis, 2010. "Treating missing values in INAR(1) models: An application to syndromic surveillance data," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 12-19, January.
    12. Christian Weiß, 2009. "Modelling time series of counts with overdispersion," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 507-519, November.
    13. Yunwei Cui & Robert Lund, 2009. "A new look at time series of counts," Biometrika, Biometrika Trust, vol. 96(4), pages 781-792.
    14. Alexandra M. Schmidt & João Batista M. Pereira, 2011. "Modelling Time Series of Counts in Epidemiology," International Statistical Review, International Statistical Institute, vol. 79(1), pages 48-69, April.
    15. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
    16. Konstantinos Fokianos & Dag Tjøstheim, 2012. "Nonlinear Poisson autoregression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1205-1225, December.
    17. Zhu, Fukang & Wang, Dehui, 2010. "Diagnostic checking integer-valued ARCH(p) models using conditional residual autocorrelations," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 496-508, February.
    18. Christian Weiss, 2009. "Monitoring correlated processes with binomial marginals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(4), pages 399-414.
    19. Fukang Zhu & Dehui Wang, 2011. "Estimation and testing for a Poisson autoregressive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 211-230, March.
    20. Xanthi Pedeli & Dimitris Karlis, 2013. "On composite likelihood estimation of a multivariate INAR(1) model," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 206-220, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tobias A. Möller & Maria Eduarda Silva & Christian H. Weiß & Manuel G. Scotto & Isabel Pereira, 2016. "Self-exciting threshold binomial autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 369-400, October.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:125:y:2014:i:c:p:233-251. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.