IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v96y2009i4p781-792.html
   My bibliography  Save this article

A new look at time series of counts

Author

Listed:
  • Yunwei Cui
  • Robert Lund

Abstract

This paper proposes a simple new model for stationary time series of integer counts. Previous work has focused on thinning methods and classical time series autoregressive moving-average difference equations; in contrast, our methods use a renewal process to generate a correlated sequence of Bernoulli trials. By superpositioning independent copies of such processes, stationary series with binomial, Poisson, geometric or any other discrete marginal distribution can be readily constructed. The model class proposed is parsimonious, non-Markov and readily generates series with either short- or long-memory autocovariances. The model can be fitted with linear prediction techniques for stationary series. As an example, a stationary series with binomial marginal distributions is fitted to the number of rainy days in 210 consecutive weeks at Key West, Florida. Copyright 2009, Oxford University Press.

Suggested Citation

  • Yunwei Cui & Robert Lund, 2009. "A new look at time series of counts," Biometrika, Biometrika Trust, vol. 96(4), pages 781-792.
  • Handle: RePEc:oup:biomet:v:96:y:2009:i:4:p:781-792
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asp057
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fokianos, Konstantinos & Tjøstheim, Dag, 2011. "Log-linear Poisson autoregression," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 563-578, March.
    2. Tianqing Liu & Xiaohui Yuan, 2013. "Random rounded integer-valued autoregressive conditional heteroskedastic process," Statistical Papers, Springer, vol. 54(3), pages 645-683, August.
    3. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    4. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    5. Cui, Yunwei & Lund, Robert, 2010. "Inference in binomial models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1985-1990, December.
    6. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    7. repec:hrv:faseco:34650304 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:96:y:2009:i:4:p:781-792. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: https://academic.oup.com/biomet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.