IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v182y2007i1p383-399.html
   My bibliography  Save this item

Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jorge Ivan Romero-Gelvez & Monica Garcia-Melon, 2016. "Influence Analysis in Consensus Search — A Multi Criteria Group Decision Making Approach in Environmental Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 791-813, July.
  2. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
  3. Fabio Blanco-Mesa & Ernesto León-Castro & Jorge Romero-Muñoz, 2021. "Pythagorean Membership Grade Aggregation Operators: Application in Financial knowledge," Mathematics, MDPI, vol. 9(17), pages 1-15, September.
  4. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
  5. Tien-Chin Wang & Ying-Ling Lin, 2009. "Using a Multi-Criteria Group Decision Making Approach to Select Merged Strategies for Commercial Banks," Group Decision and Negotiation, Springer, vol. 18(6), pages 519-536, November.
  6. Fernandez, Eduardo & Olmedo, Rafael, 2013. "An outranking-based general approach to solving group multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 225(3), pages 497-506.
  7. Huayou Chen & Ligang Zhou, 2012. "A Relative Entropy Approach to Group Decision Making with Interval Reciprocal Relations Based on COWA Operator," Group Decision and Negotiation, Springer, vol. 21(4), pages 585-599, July.
  8. Pedrycz, Witold, 2014. "Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing," European Journal of Operational Research, Elsevier, vol. 232(1), pages 137-145.
  9. Neha Dimri & Himanshu Kaul & Daya Gupta, 2018. "MetaXplorer: an intelligent and adaptable metasearch engine using a novel ordered weighted averaging operator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1315-1325, December.
  10. Byeong Seok Ahn, 2014. "Developing Group Ordered Weighted Averaging Operator Weights for Group Decision Support," Group Decision and Negotiation, Springer, vol. 23(5), pages 1127-1143, September.
  11. Cabrerizo, Francisco Javier & Herrera-Viedma, Enrique & Pedrycz, Witold, 2013. "A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts," European Journal of Operational Research, Elsevier, vol. 230(3), pages 624-633.
  12. Du, Junliang & Liu, Sifeng & Liu, Yong, 2022. "A limited cost consensus approach with fairness concern and its application," European Journal of Operational Research, Elsevier, vol. 298(1), pages 261-275.
  13. Khalid, Asma & Beg, Ismat, 2018. "Role of honesty and confined interpersonal influence in modelling predilections," MPRA Paper 95831, University Library of Munich, Germany, revised 10 Jan 2019.
  14. Wasim Akram Mandal, 2023. "Bipolar Pythagorean Fuzzy Sets and Their Application in Multi-attribute Decision Making Problems," Annals of Data Science, Springer, vol. 10(3), pages 555-587, June.
  15. Junling Zhang & Xiaowen Qi & Changyong Liang, 2018. "Tackling Complexity in Green Contractor Selection for Mega Infrastructure Projects: A Hesitant Fuzzy Linguistic MADM Approach with considering Group Attitudinal Character and Attributes’ Interdependen," Complexity, Hindawi, vol. 2018, pages 1-31, December.
  16. Bingsheng Liu & Tengfei Huo & Pinchao Liao & Jie Gong & Bin Xue, 2015. "A Group Decision-Making Aggregation Model for Contractor Selection in Large Scale Construction Projects Based on Two-Stage Partial Least Squares (PLS) Path Modeling," Group Decision and Negotiation, Springer, vol. 24(5), pages 855-883, September.
  17. Russ McBride & Mark D. Packard & Brent B. Clark, 2024. "Rogue Entrepreneurship," Entrepreneurship Theory and Practice, , vol. 48(1), pages 392-417, January.
  18. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
  19. Zeshui Xu & Xiaoqiang Cai, 2012. "Minimizing Group Discordance Optimization Model for Deriving Expert Weights," Group Decision and Negotiation, Springer, vol. 21(6), pages 863-875, November.
  20. Zhou-Jing Wang & Yuhong Wang & Kevin W. Li, 2016. "An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations," Group Decision and Negotiation, Springer, vol. 25(1), pages 181-202, January.
  21. B. Ahn & S. Choi, 2012. "Aggregation of ordinal data using ordered weighted averaging operator weights," Annals of Operations Research, Springer, vol. 201(1), pages 1-16, December.
  22. Giuseppe De Marco & Jacqueline Morgan, 2014. "On Ordered Weighted Averaging Social Optima," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 623-635, February.
  23. Brunelli, Matteo & Fedrizzi, Michele, 2024. "Inconsistency indices for pairwise comparisons and the Pareto dominance principle," European Journal of Operational Research, Elsevier, vol. 312(1), pages 273-282.
  24. Tien-Chin Wang & Hsiu-Chin Hsieh & Xuan-Huynh Nguyen & Chin-Ying Huang & Jen-Yao Lee, 2022. "Evaluating the Influence of Criteria Revitalization Strategy Implementation for the Hospitality Industry in the Post-Pandemic Era," World, MDPI, vol. 3(2), pages 1-18, April.
  25. Jian Wu, 2016. "Consistency in MCGDM Problems with Intuitionistic Fuzzy Preference Relations Based on an Exponential Score Function," Group Decision and Negotiation, Springer, vol. 25(2), pages 399-420, March.
  26. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
  27. Gao, Jianwei & Li, Ming & Liu, Huihui, 2015. "Generalized ordered weighted utility averaging-hyperbolic absolute risk aversion operators and their applications to group decision-making," European Journal of Operational Research, Elsevier, vol. 243(1), pages 258-270.
  28. Wu, Desheng Dash, 2009. "Performance evaluation: An integrated method using data envelopment analysis and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 194(1), pages 227-235, April.
  29. Pingtao Yi & Qiankun Dong & Weiwei Li, 2021. "A family of IOWA operators with reliability measurement under interval-valued group decision-making environment," Group Decision and Negotiation, Springer, vol. 30(3), pages 483-505, June.
  30. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
  31. Fu, Chao & Chang, Wenjun & Xue, Min & Yang, Shanlin, 2019. "Multiple criteria group decision making with belief distributions and distributed preference relations," European Journal of Operational Research, Elsevier, vol. 273(2), pages 623-633.
  32. Zhen Zhang & Chonghui Guo, 2017. "Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1582-1599, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.