IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v25y2016i1d10.1007_s10726-015-9438-6.html
   My bibliography  Save this article

An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations

Author

Listed:
  • Zhou-Jing Wang

    (Zhejiang University of Finance and Economics)

  • Yuhong Wang

    (Jiangnan University)

  • Kevin W. Li

    (University of Windsor)

Abstract

This article studies acceptable consistency of intuitionistic preference relations (IPRs) and examines how to aggregate individual IPRs into a collective judgment in a group decision making (GDM) context. A consistency index is first introduced to measure the consistency level, thereby defining acceptable consistency for IPRs. If a decision-maker is unwilling or unavailable to revise his/her judgment for an IPR with unacceptable consistency, an automated approach is developed to improve its consistency to an acceptable level. The acceptably consistent IPRs are subsequently aggregated into a group opinion by using an induced ordered weighted averaging operator. A procedure is then proposed to solve GDM problems with IPRs. An illustrative example is presented to demonstrate the effectiveness and applicability of the proposed approach.

Suggested Citation

  • Zhou-Jing Wang & Yuhong Wang & Kevin W. Li, 2016. "An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations," Group Decision and Negotiation, Springer, vol. 25(1), pages 181-202, January.
  • Handle: RePEc:spr:grdene:v:25:y:2016:i:1:d:10.1007_s10726-015-9438-6
    DOI: 10.1007/s10726-015-9438-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-015-9438-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-015-9438-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeshui Xu & Xiaoqiang Cai, 2015. "Group Decision Making with Incomplete Interval-Valued Intuitionistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 193-215, March.
    2. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    3. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.
    4. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    5. Z Xu & M Xia, 2014. "Iterative algorithms for improving consistency of intuitionistic preference relations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 708-722, May.
    6. Chiclana, F. & Herrera-Viedma, E. & Herrera, F. & Alonso, S., 2007. "Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 182(1), pages 383-399, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiayu Tong & Zhou-Jing Wang, 2016. "A Group Decision Framework with Intuitionistic Preference Relations and Its Application to Low Carbon Supplier Selection," IJERPH, MDPI, vol. 13(9), pages 1-16, September.
    2. Jia-Wei Tang & Tsuen-Ho Hsu, 2018. "Utilizing the Hierarchy Structural Fuzzy Analytical Network Process Model to Evaluate Critical Elements of Marketing Strategic Alliance Development in Mobile Telecommunication Industry," Group Decision and Negotiation, Springer, vol. 27(2), pages 251-284, April.
    3. Zhen Zhang & Chonghui Guo, 2017. "Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1582-1599, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Zhang & Chonghui Guo, 2017. "Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1582-1599, December.
    2. Jinpei Liu & Jingmiao Song & Qin Xu & Zhifu Tao & Huayou Chen, 2019. "Group decision making based on DEA cross-efficiency with intuitionistic fuzzy preference relations," Fuzzy Optimization and Decision Making, Springer, vol. 18(3), pages 345-370, September.
    3. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    4. Wu, Desheng Dash, 2009. "Performance evaluation: An integrated method using data envelopment analysis and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 194(1), pages 227-235, April.
    5. Tien-Chin Wang & Ying-Ling Lin, 2009. "Using a Multi-Criteria Group Decision Making Approach to Select Merged Strategies for Commercial Banks," Group Decision and Negotiation, Springer, vol. 18(6), pages 519-536, November.
    6. Jian Wu, 2016. "Consistency in MCGDM Problems with Intuitionistic Fuzzy Preference Relations Based on an Exponential Score Function," Group Decision and Negotiation, Springer, vol. 25(2), pages 399-420, March.
    7. Huayou Chen & Ligang Zhou, 2012. "A Relative Entropy Approach to Group Decision Making with Interval Reciprocal Relations Based on COWA Operator," Group Decision and Negotiation, Springer, vol. 21(4), pages 585-599, July.
    8. Wang, Ying-Ming & Parkan, Celik, 2008. "Optimal aggregation of fuzzy preference relations with an application to broadband internet service selection," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1476-1486, June.
    9. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    10. Xunjie Gou & Zeshui Xu & Xinxin Wang & Huchang Liao, 2021. "Managing consensus reaching process with self-confident double hierarchy linguistic preference relations in group decision making," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 51-79, March.
    11. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    12. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Dai, Min, 2008. "A comparative study of the numerical scales and the prioritization methods in AHP," European Journal of Operational Research, Elsevier, vol. 186(1), pages 229-242, April.
    13. B. Ahn & S. Choi, 2012. "Aggregation of ordinal data using ordered weighted averaging operator weights," Annals of Operations Research, Springer, vol. 201(1), pages 1-16, December.
    14. Kuo-Fang Hsu & Ping-Lung Huang & Tian-Shyug Lee & Bruce C. Y. Lee, 2023. "Analysis of Taiwan Emergency Physicians’ Core Competencies Based on ACGME Criteria," SAGE Open, , vol. 13(1), pages 21582440231, February.
    15. Zhibin Wu & Jie Xiao & Ivan Palomares, 2019. "Direct Iterative Procedures for Consensus Building with Additive Preference Relations Based on the Discrete Assessment Scale," Group Decision and Negotiation, Springer, vol. 28(6), pages 1167-1191, December.
    16. Neha Dimri & Himanshu Kaul & Daya Gupta, 2018. "MetaXplorer: an intelligent and adaptable metasearch engine using a novel ordered weighted averaging operator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1315-1325, December.
    17. Wu-E Yang & Chao-Qun Ma & Zhi-Qiu Han & Wen-Jun Chen, 2016. "Checking and adjusting order-consistency of linguistic pairwise comparison matrices for getting transitive preference relations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 769-787, July.
    18. Jana Krejčí & Alessio Ishizaka, 2018. "FAHPSort: A Fuzzy Extension of the AHPSort Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1119-1145, July.
    19. Tien-Chin Wang & Hsiu-Chin Hsieh & Xuan-Huynh Nguyen & Chin-Ying Huang & Jen-Yao Lee, 2022. "Evaluating the Influence of Criteria Revitalization Strategy Implementation for the Hospitality Industry in the Post-Pandemic Era," World, MDPI, vol. 3(2), pages 1-18, April.
    20. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:25:y:2016:i:1:d:10.1007_s10726-015-9438-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.