IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v201y2012i1p1-1610.1007-s10479-012-1169-3.html
   My bibliography  Save this article

Aggregation of ordinal data using ordered weighted averaging operator weights

Author

Listed:
  • B. Ahn
  • S. Choi

Abstract

In multi-criteria decision-making problems, ordinal data themselves provide a convenient instrument for articulating preferences but they impose some difficulty on the aggregation process since ambiguity prevails in the preference structure inherent in the ordinal data. One of the key concerns in the aggregation of ordinal data is to differentiate among the rank positions by reflecting decision-maker’s preferences. Since individual attitude is fairly different, it is presumable that each ranking position has different importance. In other words, the quantification schemes among the rank positions could vary depending on the individual preference structure. We find that, among others, the ordered weighted averaging (OWA) operator can help to take this concept into effect on several reasons. First, the OWA operator provides a means to take into account a discriminating factor by introducing the measure of attitudinal character. Second, it can produce appropriate ranking weights corresponding to each rank position by solving a mathematical program subject to the constraint of attitudinal character. To better understand the attitudinal character playing a role as a discriminating factor, we develop centered ranking weights from ordinal weak relations among the ranking positions and then investigate their properties to relate them with the OWA operator weights having the maximum entropy. Finally, we present a method for generating the OWA operator weights via rank-based weighting functions. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • B. Ahn & S. Choi, 2012. "Aggregation of ordinal data using ordered weighted averaging operator weights," Annals of Operations Research, Springer, vol. 201(1), pages 1-16, December.
  • Handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:1-16:10.1007/s10479-012-1169-3
    DOI: 10.1007/s10479-012-1169-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1169-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1169-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wade D. Cook & Lawrence M. Seiford, 1978. "Priority Ranking and Consensus Formation," Management Science, INFORMS, vol. 24(16), pages 1721-1732, December.
    2. Zachary F. Lansdowne, 1996. "Ordinal ranking methods for multicriterion decision making," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 613-627, August.
    3. Chiclana, F. & Herrera-Viedma, E. & Herrera, F. & Alonso, S., 2007. "Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 182(1), pages 383-399, October.
    4. F. Hutton Barron & Bruce E. Barrett, 1996. "Decision Quality Using Ranked Attribute Weights," Management Science, INFORMS, vol. 42(11), pages 1515-1523, November.
    5. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Carneiro & Luís Conceição & Diogo Martinho & Goreti Marreiros & Paulo Novais, 2018. "Including cognitive aspects in multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 265(2), pages 269-291, June.
    2. Rick A. Jones & Barbara A. Luckett & Peter A. Beling & Barry M. Horowitz, 2013. "Architectural scoring framework for the creation and evaluation of System-Aware Cyber Security solutions," Environment Systems and Decisions, Springer, vol. 33(3), pages 341-361, September.
    3. Sébastien Destercke, 2017. "On the median in imprecise ordinal problems," Annals of Operations Research, Springer, vol. 256(2), pages 375-392, September.
    4. Chao Fu & Dong-Ling Xu, 2016. "Determining attribute weights to improve solution reliability and its application to selecting leading industries," Annals of Operations Research, Springer, vol. 245(1), pages 401-426, October.
    5. Remigiusz Gawlik & Dominika Siwiec & Andrzej Pacana, 2024. "Quality–Cost–Environment Assessment of Sustainable Manufacturing of Photovoltaic Panels," Energies, MDPI, vol. 17(7), pages 1-17, March.
    6. Carayannis, Elias G. & Goletsis, Yorgos & Grigoroudis, Evangelos, 2018. "Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 4-17.
    7. Junzhe Bao & Xudong Li & Chuanhua Yu, 2015. "The Construction and Validation of the Heat Vulnerability Index, a Review," IJERPH, MDPI, vol. 12(7), pages 1-15, June.
    8. Hsu-Shih Shih, 2016. "A Mixed-Data Evaluation in Group TOPSIS with Differentiated Decision Power," Group Decision and Negotiation, Springer, vol. 25(3), pages 537-565, May.
    9. Reimann, Olivier & Schumacher, Christian & Vetschera, Rudolf, 2017. "How well does the OWA operator represent real preferences?," European Journal of Operational Research, Elsevier, vol. 258(3), pages 993-1003.
    10. Roger Chapman Burk & Richard M. Nehring, 2023. "An Empirical Comparison of Rank-Based Surrogate Weights in Additive Multiattribute Decision Analysis," Decision Analysis, INFORMS, vol. 20(1), pages 55-72, March.
    11. Ivona Ivić & Anita Cerić, 2024. "Mitigation Measures for Information Asymmetry between Participants in Construction Projects: The Impact of Trust," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
    12. Wenjun Chang & Chao Fu & Nanping Feng & Shanlin Yang, 2021. "Multi-criteria Group Decision Making with Various Ordinal Assessments," Group Decision and Negotiation, Springer, vol. 30(6), pages 1285-1314, December.
    13. Kuei-Hu Chang, 2016. "A novel reliability allocation approach using the OWA tree and soft set," Annals of Operations Research, Springer, vol. 244(1), pages 3-22, September.
    14. de Almeida Filho, Adiel T. & Clemente, Thárcylla R.N. & Morais, Danielle Costa & de Almeida, Adiel Teixeira, 2018. "Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 264(2), pages 453-461.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou-Jing Wang & Yuhong Wang & Kevin W. Li, 2016. "An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations," Group Decision and Negotiation, Springer, vol. 25(1), pages 181-202, January.
    2. Zachary F. Lansdowne, 1996. "Ordinal ranking methods for multicriterion decision making," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 613-627, August.
    3. Athanasios Spyridakos & Denis Yannacopoulos, 2015. "Incorporating collective functions to multicriteria disaggregation–aggregation approaches for small group decision making," Annals of Operations Research, Springer, vol. 227(1), pages 119-136, April.
    4. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    5. Hsu-Shih Shih, 2016. "A Mixed-Data Evaluation in Group TOPSIS with Differentiated Decision Power," Group Decision and Negotiation, Springer, vol. 25(3), pages 537-565, May.
    6. Agata Sielska, 2015. "The impact of weights on the quality of agricultural producers' multicriteria decision models," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(4), pages 51-69.
    7. Neha Dimri & Himanshu Kaul & Daya Gupta, 2018. "MetaXplorer: an intelligent and adaptable metasearch engine using a novel ordered weighted averaging operator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1315-1325, December.
    8. Jiménez, Antonio & Mateos, Alfonso & Sabio, Pilar, 2013. "Dominance intensity measure within fuzzy weight oriented MAUT: An application," Omega, Elsevier, vol. 41(2), pages 397-405.
    9. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    10. Jian Wu, 2016. "Consistency in MCGDM Problems with Intuitionistic Fuzzy Preference Relations Based on an Exponential Score Function," Group Decision and Negotiation, Springer, vol. 25(2), pages 399-420, March.
    11. Luigi Fabbris & Manuela Scioni, 2021. "Pooling Rankings to Obtain a Set of Scores for a Composite Indicator of Erasmus + Mobility Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 481-497, August.
    12. Huayou Chen & Ligang Zhou, 2012. "A Relative Entropy Approach to Group Decision Making with Interval Reciprocal Relations Based on COWA Operator," Group Decision and Negotiation, Springer, vol. 21(4), pages 585-599, July.
    13. Guitouni, Adel & Martel, Jean-Marc, 1998. "Tentative guidelines to help choosing an appropriate MCDA method," European Journal of Operational Research, Elsevier, vol. 109(2), pages 501-521, September.
    14. Wu, Desheng Dash, 2009. "Performance evaluation: An integrated method using data envelopment analysis and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 194(1), pages 227-235, April.
    15. Ewa Roszkowska, 2020. "The extention rank ordering criteria weighting methods in fuzzy enviroment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 91-114.
    16. Tien-Chin Wang & Ying-Ling Lin, 2009. "Using a Multi-Criteria Group Decision Making Approach to Select Merged Strategies for Commercial Banks," Group Decision and Negotiation, Springer, vol. 18(6), pages 519-536, November.
    17. Zhen Zhang & Chonghui Guo, 2017. "Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1582-1599, December.
    18. Mats Danielson & Love Ekenberg, 2016. "The CAR Method for Using Preference Strength in Multi-criteria Decision Making," Group Decision and Negotiation, Springer, vol. 25(4), pages 775-797, July.
    19. Vetschera, Rudolf & Chen, Ye & Hipel, Keith W. & Marc Kilgour, D., 2010. "Robustness and information levels in case-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 202(3), pages 841-852, May.
    20. Ahn, Byeong Seok, 2017. "Approximate weighting method for multiattribute decision problems with imprecise parameters," Omega, Elsevier, vol. 72(C), pages 87-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:1-16:10.1007/s10479-012-1169-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.