IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v181y2007i1p40-58.html
   My bibliography  Save this item

A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yan Zheng & Meixian Xu & Zhaohu Wang & Yujie Xiao, 2023. "A Genetic Algorithm for Integrated Scheduling of Container Handing Systems at Container Terminals from a Low-Carbon Operations Perspective," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
  2. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
  3. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
  4. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
  5. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
  6. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
  7. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
  8. Kizilay, Damla & Hentenryck, Pascal Van & Eliiyi, Deniz T., 2020. "Constraint programming models for integrated container terminal operations," European Journal of Operational Research, Elsevier, vol. 286(3), pages 945-962.
  9. Hsien-Pin Hsu & Chia-Nan Wang & Hsin-Pin Fu & Thanh-Tuan Dang, 2021. "Joint Scheduling of Yard Crane, Yard Truck, and Quay Crane for Container Terminal Considering Vessel Stowage Plan: An Integrated Simulation-Based Optimization Approach," Mathematics, MDPI, vol. 9(18), pages 1-28, September.
  10. Zhou, Chenhao & Lee, Byung Kwon & Li, Haobin, 2020. "Integrated optimization on yard crane scheduling and vehicle positioning at container yards," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
  11. Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
  12. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
  13. Leonard Heilig & Stefan Voß, 2017. "Inter-terminal transportation: an annotated bibliography and research agenda," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 35-63, March.
  14. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
  15. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
  16. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
  17. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
  18. Harry Geerlings & Robert Heij & Ron van Duin, 2018. "Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-20, December.
  19. T. Jonker & M. B. Duinkerken & N. Yorke-Smith & A. Waal & R. R. Negenborn, 2021. "Coordinated optimization of equipment operations in a container terminal," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 281-311, June.
  20. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
  21. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
  22. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
  23. Marco Schulze & Julia Rieck & Cinna Seifi & Jürgen Zimmermann, 2016. "Machine scheduling in underground mining: an application in the potash industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 365-403, March.
  24. Guangchen Wang & Peng Wang & Honggang Zhang, 2024. "A Self-Adaptive Memetic Algorithm for Distributed Job Shop Scheduling Problem," Mathematics, MDPI, vol. 12(5), pages 1-16, February.
  25. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
  26. Xi Guo & Shell Ying Huang, 2012. "Dynamic Space and Time Partitioning for Yard Crane Workload Management in Container Terminals," Transportation Science, INFORMS, vol. 46(1), pages 134-148, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.