IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v129y2001i3p596-618.html
   My bibliography  Save this item

A Shapley function on a class of cooperative fuzzy games

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Conrado M. Manuel & Daniel Martín, 2020. "A Monotonic Weighted Shapley Value," Group Decision and Negotiation, Springer, vol. 29(4), pages 627-654, August.
  2. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2002. "Convex Fuzzy Games and Participation Monotonic Allocation Schemes," Other publications TiSEM ad3fc093-38be-4802-aa35-a, Tilburg University, School of Economics and Management.
  3. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Hypercubes and compromise values for cooperative fuzzy games," European Journal of Operational Research, Elsevier, vol. 155(3), pages 733-740, June.
  4. Chenglin Wang & Zhicheng Zhou & Xiaohui Yu & Jintao Chen & Pengnan Li & Ziqi Wang, 2023. "Research on Profit Allocation of Agricultural Products Co-Delivery Based on Modified Interval Shapley Value," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
  5. Conrado M. Manuel & Daniel Martín, 2021. "A Monotonic Weighted Banzhaf Value for Voting Games," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
  6. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Egalitarianism in convex fuzzy games," Mathematical Social Sciences, Elsevier, vol. 47(3), pages 313-325, May.
  7. Armaghan Abed-Elmdoust & Reza Kerachian, 2012. "Water Resources Allocation Using a Cooperative Game with Fuzzy Payoffs and Fuzzy Coalitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3961-3976, October.
  8. Tido Takeng, Rodrigue, 2022. "Uncertain production environment and communication structure," Journal of Mathematical Economics, Elsevier, vol. 102(C).
  9. Yaron Azrieli & Ehud Lehrer, 2007. "On some families of cooperative fuzzy games," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 1-15, September.
  10. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.
  11. Butnariu, Dan & Kroupa, Tomas, 2008. "Shapley mappings and the cumulative value for n-person games with fuzzy coalitions," European Journal of Operational Research, Elsevier, vol. 186(1), pages 288-299, April.
  12. Yu-Hsien Liao, 2013. "The Shapley value for fuzzy games: TU games approach," Economics Bulletin, AccessEcon, vol. 33(1), pages 192-197.
  13. Neog, Rupok & Borkotokey, Surajit, 2011. "Dynamic resource allocation in fuzzy coalitions : a game theoretic model," MPRA Paper 40074, University Library of Munich, Germany.
  14. Fanyong Meng & Qiang Zhang & Xiaohong Chen, 2017. "Fuzzy Multichoice Games with Fuzzy Characteristic Functions," Group Decision and Negotiation, Springer, vol. 26(3), pages 565-595, May.
  15. Surajit Borkotokey & Rupok Neog, 2012. "Allocating Profit Among Rational Players in a Fuzzy Coalition: A Game Theoretic Model," Group Decision and Negotiation, Springer, vol. 21(4), pages 439-459, July.
  16. Mojtaba Sadegh & Najmeh Mahjouri & Reza Kerachian, 2010. "Optimal Inter-Basin Water Allocation Using Crisp and Fuzzy Shapley Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2291-2310, August.
  17. Yanhua Du & Jun Fang & Yongjian Ke & Simon P Philbin & Jingxiao Zhang, 2019. "Developing a Revenue Sharing Method for an Operational Transfer-Operate-Transfer Project," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
  18. Hsien-Chung Wu, 2019. "Cores and dominance cores of cooperative games endowed with fuzzy payoffs," Fuzzy Optimization and Decision Making, Springer, vol. 18(2), pages 219-257, June.
  19. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
  20. Yu-Hsien Liao, 2017. "Fuzzy games: a complement-consistent solution, axiomatizations and dynamic approaches," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 257-268, September.
  21. J. R. Fernández & I. Gallego & A. Jiménez-Losada & M. Ordóñez, 2019. "The cg-average tree value for games on cycle-free fuzzy communication structures," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 456-478, October.
  22. Li, Shujin & Zhang, Qiang, 2009. "A simplified expression of the Shapley function for fuzzy game," European Journal of Operational Research, Elsevier, vol. 196(1), pages 234-245, July.
  23. Fernández, J.R. & Gallego, I. & Jiménez-Losada, A. & Ordóñez, M., 2016. "Cooperation among agents with a proximity relation," European Journal of Operational Research, Elsevier, vol. 250(2), pages 555-565.
  24. Fanyong Meng & Xiaohong Chen & Chunqiao Tan, 2016. "Cooperative fuzzy games with interval characteristic functions," Operational Research, Springer, vol. 16(1), pages 1-24, April.
  25. Mojtaba Sadegh & Reza Kerachian, 2011. "Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2543-2573, August.
  26. Yaron Azrieli & Ehud Lehrer, 2005. "Cooperative investment games or population games," Game Theory and Information 0503007, University Library of Munich, Germany.
  27. Zijun Li & Fanyong Meng, 2023. "The potential and consistency of the Owen value for fuzzy cooperative games with a coalition structure," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 387-414, September.
  28. Liu, Dehai & Ji, Xiaoxian & Tang, Jiafu & Li, Hongyi, 2020. "A fuzzy cooperative game theoretic approach for multinational water resource spatiotemporal allocation," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1025-1037.
  29. Jiménez-Losada, Andrés & Fernández, Julio R. & Ordóñez, Manuel & Grabisch, Michel, 2010. "Games on fuzzy communication structures with Choquet players," European Journal of Operational Research, Elsevier, vol. 207(2), pages 836-847, December.
  30. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.