IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpga/0503007.html
   My bibliography  Save this paper

Cooperative investment games or population games

Author

Listed:
  • Yaron Azrieli

    (Tel Aviv University)

  • Ehud Lehrer

    (Tel Aviv University)

Abstract

The model of a cooperative fuzzy game is interpreted as both a population game and a cooperative investment game. Three types of core- like solutions induced by these interpretations are introduced and investigated. The interpretation of a game as a population game allows us to define sub-games. We show that, unlike the well-known Shapley- Shubik theorem on market games (Shapley-Shubik) there might be a population game such that each of its sub-games has a non-empty core and, nevertheless, it is not a market game. It turns out that, in order to be a market game, a population game needs to be also homogeneous. We also discuss some special classes of population games such as convex games, exact games, homogeneousgames and additive games.

Suggested Citation

  • Yaron Azrieli & Ehud Lehrer, 2005. "Cooperative investment games or population games," Game Theory and Information 0503007, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpga:0503007
    Note: Type of Document - pdf; pages: 30
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/game/papers/0503/0503007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsurumi, Masayo & Tanino, Tetsuzo & Inuiguchi, Masahiro, 2001. "A Shapley function on a class of cooperative fuzzy games," European Journal of Operational Research, Elsevier, vol. 129(3), pages 596-618, March.
    2. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2002. "Convex Fuzzy Games and Participation Monotonic Allocation Schemes," Other publications TiSEM ad3fc093-38be-4802-aa35-a, Tilburg University, School of Economics and Management.
    3. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
    4. Yaron Azrieli & Ehud Lehrer, 2004. "On Concavification and Convex Games," Game Theory and Information 0408002, University Library of Munich, Germany.
    5. Louis J. Billera & David C. Heath, 1982. "Allocation of Shared Costs: A Set of Axioms Yielding A Unique Procedure," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 32-39, February.
    6. Jean-Pierre Aubin, 1981. "Cooperative Fuzzy Games," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojmír Sabolovič, 2011. "An alternative methodological approach to value analysis of regions, municipal corporations and clusters," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 59(4), pages 295-300.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Hypercubes and compromise values for cooperative fuzzy games," European Journal of Operational Research, Elsevier, vol. 155(3), pages 733-740, June.
    2. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Egalitarianism in convex fuzzy games," Mathematical Social Sciences, Elsevier, vol. 47(3), pages 313-325, May.
    3. Yu-Hsien Liao, 2013. "The Shapley value for fuzzy games: TU games approach," Economics Bulletin, AccessEcon, vol. 33(1), pages 192-197.
    4. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    5. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2002. "Convex Fuzzy Games and Participation Monotonic Allocation Schemes," Discussion Paper 2002-13, Tilburg University, Center for Economic Research.
    6. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    7. Boonen, T.J. & De Waegenaere, A.M.B. & Norde, H.W., 2012. "A Generalization of the Aumann-Shapley Value for Risk Capital Allocation Problems," Other publications TiSEM 2c502ef8-76f0-47f5-ab45-1, Tilburg University, School of Economics and Management.
    8. Tijs, S.H. & Brânzei, R. & Ishihara, S. & Muto, S., 2002. "On Cores and Stable Sets for Fuzzy Games," Other publications TiSEM 574e2ed7-34ee-4d97-a289-0, Tilburg University, School of Economics and Management.
    9. Tijs, S.H. & Brânzei, R. & Ishihara, S. & Muto, S., 2002. "On Cores and Stable Sets for Fuzzy Games," Discussion Paper 2002-116, Tilburg University, Center for Economic Research.
    10. Jiménez-Losada, Andrés & Fernández, Julio R. & Ordóñez, Manuel & Grabisch, Michel, 2010. "Games on fuzzy communication structures with Choquet players," European Journal of Operational Research, Elsevier, vol. 207(2), pages 836-847, December.
    11. van Gulick, G. & Norde, H.W., 2011. "Fuzzy Cores and Fuzzy Balancedness," Other publications TiSEM 5792b50b-8b99-46dd-bba5-4, Tilburg University, School of Economics and Management.
    12. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    13. Bochet, O.L.A. & Klaus, B.E., 2007. "A note on Dasgupta, Hammond, and Maskin's (1979) domain richness condition," Research Memorandum 039, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    14. Conrado M. Manuel & Daniel Martín, 2021. "A Monotonic Weighted Banzhaf Value for Voting Games," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
    15. Gerwald Gulick & Henk Norde, 2013. "Fuzzy cores and fuzzy balancedness," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 131-146, April.
    16. J. R. Fernández & I. Gallego & A. Jiménez-Losada & M. Ordóñez, 2019. "The cg-average tree value for games on cycle-free fuzzy communication structures," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 456-478, October.
    17. Yu-Hsien Liao, 2017. "Fuzzy games: a complement-consistent solution, axiomatizations and dynamic approaches," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 257-268, September.
    18. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    19. Yaron Azrieli & Ehud Lehrer, 2007. "On some families of cooperative fuzzy games," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 1-15, September.
    20. Philippe Artzner & Claude d'Aspremont & Louis-André Gérard-Varet, 1986. "Envelopes and Geometrical Covers of Side-Payment Games and their Market Representations," Post-Print hal-00950764, HAL.

    More about this item

    Keywords

    investment game; population game; fuzzy game; core-like solution; market game;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0503007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.