IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v51y2007i11p5247-5252.html
   My bibliography  Save this item

Fitting finite mixtures of generalized linear regressions in R

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Naoki Sudo, 2020. "Two Types of Support for Redistribution of Wealth: Consistent and Inconsistent Policy Preferences," Societies, MDPI, vol. 10(2), pages 1-18, June.
  2. Mukta Paliwal & Anand Patwardhan, 2013. "Identification of clusters in tropical cyclone tracks of North Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 645-656, September.
  3. Rainer Schlittgen, 2011. "A weighted least-squares approach to clusterwise regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 205-217, June.
  4. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
  5. Sandeep Rath & Kumar Rajaram, 2022. "Staff Planning for Hospitals with Implicit Cost Estimation and Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1271-1289, March.
  6. repec:jss:jstsof:28:i04 is not listed on IDEAS
  7. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
  8. Koen Degeling & Hendrik Koffijberg & Mira D. Franken & Miriam Koopman & Maarten J. IJzerman, 2019. "Comparing Strategies for Modeling Competing Risks in Discrete-Event Simulations: A Simulation Study and Illustration in Colorectal Cancer," Medical Decision Making, , vol. 39(1), pages 57-73, January.
  9. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
  10. Sara Dias & Valeska Andreozzi & Rosário Martins, 2013. "Analysis of HIV/AIDS DRG in Portugal: a hierarchical finite mixture model," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(5), pages 715-723, October.
  11. Ying Liu & Sudha Ram & Robert F. Lusch & Michael Brusco, 2010. "Multicriterion Market Segmentation: A New Model, Implementation, and Evaluation," Marketing Science, INFORMS, vol. 29(5), pages 880-894, 09-10.
  12. Omerovic, Sanela & Friedl, Herwig & Grün, Bettina, 2022. "Modelling Multiple Regimes in Economic Growth by Mixtures of Generalised Nonlinear Models," Econometrics and Statistics, Elsevier, vol. 22(C), pages 124-135.
  13. Francesca Torti & Marco Riani & Gianluca Morelli, 2021. "Semiautomatic robust regression clustering of international trade data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 863-894, September.
  14. David Rügamer & Florian Pfisterer & Bernd Bischl & Bettina Grün, 2024. "Mixture of experts distributional regression: implementation using robust estimation with adaptive first-order methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(2), pages 351-373, June.
  15. Heinz Holling & Katrin Jansen & Walailuck Böhning & Dankmar Böhning & Susan Martin & Patarawan Sangnawakij, 2022. "Estimation of Effect Heterogeneity in Rare Events Meta-Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1081-1102, September.
  16. Spindler, M., 2014. "“They do know what they are doing ... at least most of them.†Asymmetric Information in the (private) Disability Insurance," Health, Econometrics and Data Group (HEDG) Working Papers 14/16, HEDG, c/o Department of Economics, University of York.
  17. Hartmann-Wendels, Thomas & Miller, Patrick & Töws, Eugen, 2014. "Loss given default for leasing: Parametric and nonparametric estimations," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 364-375.
  18. Battisti, Michele & Parmeter, Christopher F., 2013. "Clustering and polarization in the distribution of output: A multivariate perspective," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 144-162.
  19. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Linear mixed models with marginally symmetric nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 151-169.
  20. Keefe Murphy & Thomas Brendan Murphy, 2020. "Gaussian parsimonious clustering models with covariates and a noise component," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 293-325, June.
  21. Michele Battisti & Christopher F. Parmeter, 2010. "Convergence Tools and Mixture Analysis," Working Papers CELEG 1007, Dipartimento di Economia e Finanza, LUISS Guido Carli.
  22. Dimitris Karlis & Purushottam Papatla & Sudipt Roy, 2016. "Finite mixtures of censored Poisson regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(2), pages 100-122, May.
  23. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
  24. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
  25. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
  26. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
  27. Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
  28. Cristina Bernini & Maria Francesca Cracolici & Cinzia Viroli, 2017. "Does Tourism Consumption Behaviour Mirror Differences in Living Standards?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 134(3), pages 1157-1171, December.
  29. Bettina Grün & Friedrich Leisch, 2008. "Identifiability of Finite Mixtures of Multinomial Logit Models with Varying and Fixed Effects," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 225-247, November.
  30. Adrian O’Hagan & Thomas Brendan Murphy & Luca Scrucca & Isobel Claire Gormley, 2019. "Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap," Computational Statistics, Springer, vol. 34(4), pages 1779-1813, December.
  31. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
  32. Lloyd-Jones, Luke R. & Nguyen, Hien D. & McLachlan, Geoffrey J., 2018. "A globally convergent algorithm for lasso-penalized mixture of linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 19-38.
  33. Carlo Gaetan & Paolo Girardi & Victor Muthama Musau, 2025. "Spatial quantile clustering of climate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 19(1), pages 147-175, March.
  34. Jessica H. Belle & Howard H. Chang & Yujie Wang & Xuefei Hu & Alexei Lyapustin & Yang Liu, 2017. "The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM 2.5 Mass and Composition," IJERPH, MDPI, vol. 14(10), pages 1-15, October.
  35. Abhinandan Dalal & Diganta Mukherjee & Subhrajyoty Roy, 2020. "The Information Content of Taster's Valuation in Tea Auctions of India," Papers 2005.02814, arXiv.org.
  36. Oyarzun, Carlos & Sanjurjo, Adam & Nguyen, Hien, 2017. "Response functions," European Economic Review, Elsevier, vol. 98(C), pages 1-31.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.