IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v93y2012icp288-295.html
   My bibliography  Save this item

Environmental consequences of the use of batteries in low carbon systems: The impact of battery production

Citations

RePEc Biblio mentions

As found on the RePEc Biblio, the curated bibliography for Economics:
  1. > Economic Development Technological Change, and Growth > Technological Change: Choices and Consequences

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
  2. Joris Šimaitis & Stephen Allen & Christopher Vagg, 2023. "Are future recycling benefits misleading? Prospective life cycle assessment of lithium‐ion batteries," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1291-1303, October.
  3. Miranda, Á.G. & Hong, C.W., 2013. "Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions," Applied Energy, Elsevier, vol. 111(C), pages 681-689.
  4. McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
  5. Juanpera, M. & Blechinger, P. & Ferrer-Martí, L. & Hoffmann, M.M. & Pastor, R., 2020. "Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  6. Rosario Tolomeo & Giovanni De Feo & Renata Adami & Libero Sesti Osséo, 2020. "Application of Life Cycle Assessment to Lithium Ion Batteries in the Automotive Sector," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
  7. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2021. "Optimization of Wind Energy Battery Storage Microgrid by Division Algorithm Considering Cumulative Exergy Demand for Power-Water Cogeneration," Energies, MDPI, vol. 14(13), pages 1-20, June.
  8. He, Hongwen & Xiong, Rui & Zhao, Kai & Liu, Zhentong, 2013. "Energy management strategy research on a hybrid power system by hardware-in-loop experiments," Applied Energy, Elsevier, vol. 112(C), pages 1311-1317.
  9. Jie Yang & Fu Gu & Jianfeng Guo & Bin Chen, 2019. "Comparative Life Cycle Assessment of Mobile Power Banks with Lithium-Ion Battery and Lithium-Ion Polymer Battery," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
  10. Christian Aichberger & Gerfried Jungmeier, 2020. "Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review," Energies, MDPI, vol. 13(23), pages 1-27, December.
  11. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
  12. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
  13. Claudia Tomasini Montenegro & Jens F. Peters & Manuel Baumann & Zhirong Zhao-Karger & Christopher Wolter & Marcel Weil, 2021. "Environmental assessment of a new generation battery: The magnesium-sulfur system," Papers 2104.03794, arXiv.org, revised Apr 2021.
  14. Nathan Guignard & Christian Cristofari & Vincent Debusschere & Lauric Garbuio & Tina Le Mao, 2022. "Micro Pumped Hydro Energy Storage: Sketching a Sustainable Hybrid Solution for Colombian Off-Grid Communities," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
  15. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
  16. Thomas Huybrechts & Philippe Reiter & Siegfried Mercelis & Jeroen Famaey & Steven Latré & Peter Hellinckx, 2021. "Automated Testbench for Hybrid Machine Learning-Based Worst-Case Energy Consumption Analysis on Batteryless IoT Devices," Energies, MDPI, vol. 14(13), pages 1-26, June.
  17. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
  18. Matteson, Schuyler & Williams, Eric, 2015. "Residual learning rates in lead-acid batteries: Effects on emerging technologies," Energy Policy, Elsevier, vol. 85(C), pages 71-79.
  19. Johanna Fink, 2023. "Can the creation of separate bidding zones within countries create imbalances in PV uptake? Evidence from Sweden," Papers 2312.16161, arXiv.org.
  20. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Harold Espargilliere & Law Torres Sevilla & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A General Framework for Multi-Criteria Based Feasibility Studies for Solar Energy Projects: Application to a Real-World Solar Farm," Energies, MDPI, vol. 14(8), pages 1-34, April.
  21. Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
  22. Jhuma Sadhukhan & Mark Christensen, 2021. "An In-Depth Life Cycle Assessment (LCA) of Lithium-Ion Battery for Climate Impact Mitigation Strategies," Energies, MDPI, vol. 14(17), pages 1-20, September.
  23. Maria M. Symeonidou & Effrosyni Giama & Agis M. Papadopoulos, 2021. "Life Cycle Assessment for Supporting Dimensioning Battery Storage Systems in Micro-Grids for Residential Applications," Energies, MDPI, vol. 14(19), pages 1-16, September.
  24. Ribau, João P. & Silva, Carla M. & Sousa, João M.C., 2014. "Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses," Applied Energy, Elsevier, vol. 129(C), pages 320-335.
  25. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
  26. Chambon, Clementine L. & Karia, Tanuj & Sandwell, Philip & Hallett, Jason P., 2020. "Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India," Renewable Energy, Elsevier, vol. 154(C), pages 432-444.
  27. Dongmin Yu & Huanan Liu & Gangui Yan & Jing Jiang & Simon Le Blond, 2017. "Optimization of Hybrid Energy Storage Systems at the Building Level with Combined Heat and Power Generation," Energies, MDPI, vol. 10(5), pages 1-15, May.
  28. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
  29. Martin, H. & Buffat, R. & Bucher, D. & Hamper, J. & Raubal, M., 2022. "Using rooftop photovoltaic generation to cover individual electric vehicle demand—A detailed case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  30. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2015. "Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage," Applied Energy, Elsevier, vol. 139(C), pages 245-259.
  31. Zhang, Shuo & Xiong, Rui & Zhang, Chengning & Sun, Fengchun, 2016. "An optimal structure selection and parameter design approach for a dual-motor-driven system used in an electric bus," Energy, Elsevier, vol. 96(C), pages 437-448.
  32. Xiong, Fengjiao & Zhou, Debi & Xie, Zhipeng & Chen, Yunyang, 2012. "A study of the Ce3+/Ce4+ redox couple in sulfamic acid for redox battery application," Applied Energy, Elsevier, vol. 99(C), pages 291-296.
  33. Iulia Dolganova & Anne Rödl & Vanessa Bach & Martin Kaltschmitt & Matthias Finkbeiner, 2020. "A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use," Resources, MDPI, vol. 9(3), pages 1-20, March.
  34. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
  35. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
  36. Sonia Longo & Maurizio Cellura & Maria Anna Cusenza & Francesco Guarino & Marina Mistretta & Domenico Panno & Claudia D’Urso & Salvatore Gianluca Leonardi & Nicola Briguglio & Giovanni Tumminia & Vinc, 2021. "Life Cycle Assessment for Supporting Eco-Design: The Case Study of Sodium–Nickel Chloride Cells," Energies, MDPI, vol. 14(7), pages 1-11, March.
  37. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
  38. Kourkoumpas, Dimitrios-Sotirios & Benekos, Georgios & Nikolopoulos, Nikolaos & Karellas, Sotirios & Grammelis, Panagiotis & Kakaras, Emmanouel, 2018. "A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions," Applied Energy, Elsevier, vol. 231(C), pages 380-398.
  39. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
  40. Chung, C.A. & Yang, Su-Wen & Yang, Chien-Yuh & Hsu, Che-Weu & Chiu, Pai-Yuh, 2013. "Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer," Applied Energy, Elsevier, vol. 103(C), pages 581-587.
  41. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
  42. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
  43. Susan Isaya Sun & Andrew Frederick Crossland & Andrew John Chipperfield & Richard George Andrew Wills, 2019. "An Emissions Arbitrage Algorithm to Improve the Environmental Performance of Domestic PV-Battery Systems," Energies, MDPI, vol. 12(3), pages 1-19, February.
  44. Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
  45. Mezzullo, William G. & McManus, Marcelle C. & Hammond, Geoff P., 2013. "Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste," Applied Energy, Elsevier, vol. 102(C), pages 657-664.
  46. Pei, Pucheng & Wang, Keliang & Ma, Ze, 2014. "Technologies for extending zinc–air battery’s cyclelife: A review," Applied Energy, Elsevier, vol. 128(C), pages 315-324.
  47. Settino, Jessica & Sant, Tonio & Micallef, Christopher & Farrugia, Mario & Spiteri Staines, Cyril & Licari, John & Micallef, Alexander, 2018. "Overview of solar technologies for electricity, heating and cooling production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 892-909.
  48. Rodríguez-Gallegos, Carlos D. & Yang, Dazhi & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study," Energy, Elsevier, vol. 160(C), pages 410-429.
  49. Sanfélix, Javier & Messagie, Maarten & Omar, Noshin & Van Mierlo, Joeri & Hennige, Volker, 2015. "Environmental performance of advanced hybrid energy storage systems for electric vehicle applications," Applied Energy, Elsevier, vol. 137(C), pages 925-930.
  50. Arbabzadeh, Maryam & Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2015. "Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration," Applied Energy, Elsevier, vol. 146(C), pages 397-408.
  51. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  52. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  53. Guang Zhu & Gaozhi Pan & Weiwei Zhang, 2018. "Evolutionary Game Theoretic Analysis of Low Carbon Investment in Supply Chains under Governmental Subsidies," IJERPH, MDPI, vol. 15(11), pages 1-27, November.
  54. Jorge Barrientos & José David López & Felipe Valencia, 2018. "A Novel Stochastic-Programming-Based Energy Management System to Promote Self-Consumption in Industrial Processes," Energies, MDPI, vol. 11(2), pages 1-15, February.
  55. Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.