IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i4p1317-1324.html
   My bibliography  Save this item

Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xinyu Miao & Haochun Zhang & Qi Wang & Wenbo Sun & Yan Xia, 2022. "Thermodynamic, Exergoeconomic and Multi-Objective Analyses of Supercritical N 2 O-He Recompression Brayton Cycle for a Nuclear Spacecraft Application," Energies, MDPI, vol. 15(21), pages 1-31, November.
  2. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
  3. Hu, Bin & Li, Yaoyu & Cao, Feng & Xing, Ziwen, 2015. "Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system," Applied Energy, Elsevier, vol. 147(C), pages 361-372.
  4. Megdouli, K. & Ejemni, N. & Nahdi, E. & Mhimid, A. & Kairouani, L., 2017. "Thermodynamic analysis of a novel ejector expansion transcritical CO2/N2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures," Energy, Elsevier, vol. 128(C), pages 586-600.
  5. Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
  6. Battisti, Felipe G. & Cardemil, José M. & da Silva, Alexandre K., 2016. "A multivariable optimization of a Brayton power cycle operating with CO2 as working fluid," Energy, Elsevier, vol. 112(C), pages 908-916.
  7. Wang, Z.Q. & Zhou, N.J. & Guo, J. & Wang, X.Y., 2012. "Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat," Energy, Elsevier, vol. 40(1), pages 107-115.
  8. Lakew, Amlaku Abie & Bolland, Olav & Ladam, Yves, 2011. "Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump," Applied Energy, Elsevier, vol. 88(9), pages 3005-3011.
  9. Mondal, Subha & De, Sudipta, 2015. "CO2 based power cycle with multi-stage compression and intercooling for low temperature waste heat recovery," Energy, Elsevier, vol. 90(P1), pages 1132-1143.
  10. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
  11. Cem Öksel & Ali Koç, 2022. "Modeling of a Combined Kalina and Organic Rankine Cycle System for Waste Heat Recovery from Biogas Engine," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
  12. Kun-Hsien Lu & Hsiao-Wei D. Chiang & Pei-Jen Wang, 2022. "Sensitivity Analysis of Transcritical CO 2 Cycle Performance Regarding Isentropic Efficiencies of Turbomachinery for Low Temperature Heat Sources," Energies, MDPI, vol. 15(23), pages 1-18, November.
  13. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
  14. Zhang, Yili & Bryan, Jacob & Richards, Geordie & Wang, Hailei, 2022. "Development and comparative selection of surrogate models using artificial neural network for an integrated regenerative transcritical cycle," Applied Energy, Elsevier, vol. 317(C).
  15. Battisti, Felipe G. & Delsoto, Giovanni S. & da Silva, Alexandre K., 2018. "Transient analysis and optimization of a recuperative sCO2 Brayton cycle assisted by heat and mass storage systems," Energy, Elsevier, vol. 150(C), pages 979-991.
  16. Battisti, Felipe G. & Cardemil, José M. & Miller, Francisco M. & da Silva, Alexandre K., 2015. "Normalized performance optimization of supercritical, CO2-based power cycles," Energy, Elsevier, vol. 82(C), pages 108-118.
  17. Mondal, Subha & De, Sudipta, 2015. "Transcritical CO2 power cycle – Effects of regenerative heating using turbine bleed gas at intermediate pressure," Energy, Elsevier, vol. 87(C), pages 95-103.
  18. Chowdhury, A.S.M. Arifur & Bugarin, Luz & Badhan, Antara & Choudhuri, Ahsan & Love, Norman, 2016. "Thermodynamic analysis of a directly heated oxyfuel supercritical power system," Applied Energy, Elsevier, vol. 179(C), pages 261-271.
  19. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
  20. Tao, Y.B. & He, Y.L. & Tao, W.Q., 2010. "Exergetic analysis of transcritical CO2 residential air-conditioning system based on experimental data," Applied Energy, Elsevier, vol. 87(10), pages 3065-3072, October.
  21. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
  22. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
  23. S. Mohammad S. Mahmoudi & Ata D. Akbari & Marc A. Rosen, 2016. "Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle," Sustainability, MDPI, vol. 8(10), pages 1-19, October.
  24. Sun, Lei & Liu, Tianyuan & Wang, Ding & Huang, Chengming & Xie, Yonghui, 2022. "Deep learning method based on graph neural network for performance prediction of supercritical CO2 power systems," Applied Energy, Elsevier, vol. 324(C).
  25. Onder Kizilkan & Hiroshi Yamaguchi, 2020. "A feasibility study of CO2‐based solar‐assisted Rankine cycle: a comparative case study for Isparta, Turkey," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 840-854, August.
  26. Suresh, M.V.J.J. & Reddy, K.S. & Kolar, Ajit Kumar, 2011. "ANN-GA based optimization of a high ash coal-fired supercritical power plant," Applied Energy, Elsevier, vol. 88(12), pages 4867-4873.
  27. Chen, Huijuan & Yogi Goswami, D. & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion," Applied Energy, Elsevier, vol. 88(8), pages 2802-2808, August.
  28. Li, Xia & Chen, Qun & Chen, Xi & He, Ke-Lun & Hao, Jun-Hong, 2020. "Graph theory-based heat current analysis method for supercritical CO2 power generation system," Energy, Elsevier, vol. 194(C).
  29. Baik, Young-Jin & Kim, Minsung & Chang, Ki Chang & Kim, Sung Jin, 2011. "Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source," Applied Energy, Elsevier, vol. 88(3), pages 892-898, March.
  30. George Stamatellos & Tassos Stamatelos, 2022. "Effect of Actual Recuperators’ Effectiveness on the Attainable Efficiency of Supercritical CO 2 Brayton Cycles for Solar Thermal Power Plants," Energies, MDPI, vol. 15(20), pages 1-20, October.
  31. Wu, Chuang & Yan, Xiao-jiang & Wang, Shun-sen & Bai, Kun-lun & Di, Juan & Cheng, Shang-fang & Li, Jun, 2016. "System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery," Energy, Elsevier, vol. 100(C), pages 391-400.
  32. Wang, J.L. & Zhao, L. & Wang, X.D., 2010. "A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle," Applied Energy, Elsevier, vol. 87(11), pages 3366-3373, November.
  33. Song, Jian & Li, Xue-song & Ren, Xiao-dong & Gu, Chun-wei, 2018. "Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 143(C), pages 406-416.
  34. Yari, Mortaza & Mahmoudi, S.M.S., 2011. "Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle)," Energy, Elsevier, vol. 36(12), pages 6839-6850.
  35. Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
  36. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Huang, Guangdai & Li, Xiaoya & Chen, Tianyu & Li, Ligeng, 2018. "Experimental investigation of a CO2-based Transcritical Rankine Cycle (CTRC) for exhaust gas recovery," Energy, Elsevier, vol. 165(PB), pages 1149-1159.
  37. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
  38. Son, Seongmin & Lee, Jeong Ik, 2018. "Application of adjoint sensitivity analysis method to supercritical CO2 power cycle optimization," Energy, Elsevier, vol. 147(C), pages 1153-1164.
  39. Wang, Yang & Zhou, Zhijun & Zhou, Junhu & Liu, Jianzhong & Wang, Zhihua & Cen, Kefa, 2011. "Performance of a micro engine with heptane as working fluid," Applied Energy, Elsevier, vol. 88(1), pages 150-155, January.
  40. Lee, Sangick, 2017. "Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm," Energy, Elsevier, vol. 118(C), pages 776-782.
  41. Song, Yuhui & Wang, Jiangfeng & Dai, Yiping & Zhou, Enmin, 2012. "Thermodynamic analysis of a transcritical CO2 power cycle driven by solar energy with liquified natural gas as its heat sink," Applied Energy, Elsevier, vol. 92(C), pages 194-203.
  42. Muhammad, Hafiz Ali & Lee, Beomjoon & Lee, Gilbong & Cho, Junhyun & Baik, Young-Jin, 2019. "Investigation of leakage reinjection system for supercritical CO2 power cycle using heat pump," Renewable Energy, Elsevier, vol. 144(C), pages 97-106.
  43. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
  44. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
  45. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
  46. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
  47. Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).
  48. Li, Tailu & Fu, Wencheng & Zhu, Jialing, 2014. "An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics," Energy, Elsevier, vol. 72(C), pages 561-573.
  49. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
  50. Akbari, Ata D. & Mahmoudi, Seyed M.S., 2014. "Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle," Energy, Elsevier, vol. 78(C), pages 501-512.
  51. Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
  52. Naseri, Ali & Bidi, Mokhtar & Ahmadi, Mohammad H., 2017. "Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink," Renewable Energy, Elsevier, vol. 113(C), pages 1215-1228.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.