IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v254y2019ics0306261919313959.html
   My bibliography  Save this item

Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Alessia Musa & Pier Giuseppe Anselma & Giovanni Belingardi & Daniela Anna Misul, 2023. "Energy Management in Hybrid Electric Vehicles: A Q-Learning Solution for Enhanced Drivability and Energy Efficiency," Energies, MDPI, vol. 17(1), pages 1-20, December.
  2. Baodi Zhang & Sheng Guo & Xin Zhang & Qicheng Xue & Lan Teng, 2020. "Adaptive Smoothing Power Following Control Strategy Based on an Optimal Efficiency Map for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 13(8), pages 1-25, April.
  3. Zhou, Quan & Li, Yanfei & Zhao, Dezong & Li, Ji & Williams, Huw & Xu, Hongming & Yan, Fuwu, 2022. "Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression," Applied Energy, Elsevier, vol. 305(C).
  4. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  5. Tsianikas, Stamatis & Yousefi, Nooshin & Zhou, Jian & Rodgers, Mark D. & Coit, David, 2021. "A storage expansion planning framework using reinforcement learning and simulation-based optimization," Applied Energy, Elsevier, vol. 290(C).
  6. Liu, Huanlong & Chen, Guanpeng & Li, Dafa & Wang, Jiawei & Zhou, Jianyi, 2021. "Energy active adjustment and bidirectional transfer management strategy of the electro-hydrostatic hydraulic hybrid powertrain for battery bus," Energy, Elsevier, vol. 230(C).
  7. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  8. Wu, Changcheng & Ruan, Jiageng & Cui, Hanghang & Zhang, Bin & Li, Tongyang & Zhang, Kaixuan, 2023. "The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid ," Energy, Elsevier, vol. 262(PB).
  9. Huang, Ruchen & He, Hongwen & Su, Qicong, 2024. "Smart energy management for hybrid electric bus via improved soft actor-critic algorithm in a heuristic learning framework," Energy, Elsevier, vol. 309(C).
  10. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
  11. Han, Lijin & Yang, Ke & Ma, Tian & Yang, Ningkang & Liu, Hui & Guo, Lingxiong, 2022. "Battery life constrained real-time energy management strategy for hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 259(C).
  12. Wang, Xuan & Wang, Rui & Jin, Ming & Shu, Gequn & Tian, Hua & Pan, Jiaying, 2020. "Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
  13. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
  14. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
  15. Liu, Zemin Eitan & Li, Yong & Zhou, Quan & Shuai, Bin & Hua, Min & Xu, Hongming & Xu, Lubing & Tan, Guikun & Li, Yanfei, 2025. "Real-time energy management for HEV combining naturalistic driving data and deep reinforcement learning with high generalization," Applied Energy, Elsevier, vol. 377(PA).
  16. Tian, Weiyong & Zhang, Xiaohui & Zhou, Peng & Guo, Ruixue, 2025. "Review of energy management technologies for unmanned aerial vehicles powered by hydrogen fuel cell," Energy, Elsevier, vol. 323(C).
  17. Dingyi Guo & Guangyin Lei & Huichao Zhao & Fang Yang & Qiang Zhang, 2024. "Quadruple Deep Q-Network-Based Energy Management Strategy for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-21, December.
  18. Li, Weihan & Cui, Han & Nemeth, Thomas & Jansen, Jonathan & Ünlübayir, Cem & Wei, Zhongbao & Feng, Xuning & Han, Xuebing & Ouyang, Minggao & Dai, Haifeng & Wei, Xuezhe & Sauer, Dirk Uwe, 2021. "Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning," Applied Energy, Elsevier, vol. 293(C).
  19. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
  20. Shuai, Bin & Zhou, Quan & Li, Ji & He, Yinglong & Li, Ziyang & Williams, Huw & Xu, Hongming & Shuai, Shijin, 2020. "Heuristic action execution for energy efficient charge-sustaining control of connected hybrid vehicles with model-free double Q-learning," Applied Energy, Elsevier, vol. 267(C).
  21. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
  22. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
  23. Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
  24. Yang, Ningkang & Ruan, Shumin & Han, Lijin & Liu, Hui & Guo, Lingxiong & Xiang, Changle, 2023. "Reinforcement learning-based real-time intelligent energy management for hybrid electric vehicles in a model predictive control framework," Energy, Elsevier, vol. 270(C).
  25. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
  26. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
  27. Xiyan Zheng & Chengji Liang & Yu Wang & Jian Shi & Gino Lim, 2022. "Multi-AGV Dynamic Scheduling in an Automated Container Terminal: A Deep Reinforcement Learning Approach," Mathematics, MDPI, vol. 10(23), pages 1-19, December.
  28. Niu, Junyan & Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Zhang, Yuanjian, 2022. "Optimal sizing and learning-based energy management strategy of NCR/LTO hybrid battery system for electric taxis," Energy, Elsevier, vol. 257(C).
  29. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
  30. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  31. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
  32. Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
  33. Zhang, Hailong & Peng, Jiankun & Tan, Huachun & Dong, Hanxuan & Ding, Fan & Ran, Bin, 2020. "Tackling SOC long-term dynamic for energy management of hybrid electric buses via adaptive policy optimization," Applied Energy, Elsevier, vol. 269(C).
  34. Ren, Xiaoxia & Ye, Jinze & Xie, Liping & Lin, Xinyou, 2024. "Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 286(C).
  35. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
  36. Peng, Jiankun & Shen, Yang & Wu, ChangCheng & Wang, Chunhai & Yi, Fengyan & Ma, Chunye, 2023. "Research on energy-saving driving control of hydrogen fuel bus based on deep reinforcement learning in freeway ramp weaving area," Energy, Elsevier, vol. 285(C).
  37. Wu, Jingda & Huang, Chao & He, Hongwen & Huang, Hailong, 2024. "Confidence-aware reinforcement learning for energy management of electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  38. Liang, Zhaowen & Ruan, Jiageng & Wang, Zhenpo & Liu, Kai & Li, Bin, 2024. "Soft actor-critic-based EMS design for dual motor battery electric bus," Energy, Elsevier, vol. 288(C).
  39. Feng, Zhiyan & Zhang, Qingang & Zhang, Yiming & Fei, Liangyu & Jiang, Fei & Zhao, Shengdun, 2024. "Practicability analysis of online deep reinforcement learning towards energy management strategy of 4WD-BEVs driven by dual-motor in-wheel motors," Energy, Elsevier, vol. 290(C).
  40. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
  41. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
  42. Chen, Ruihu & Yang, Chao & Ma, Yue & Wang, Weida & Wang, Muyao & Du, Xuelong, 2022. "Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set," Applied Energy, Elsevier, vol. 323(C).
  43. Kunyu Wang & Rong Yang & Yongjian Zhou & Wei Huang & Song Zhang, 2022. "Design and Improvement of SD3-Based Energy Management Strategy for a Hybrid Electric Urban Bus," Energies, MDPI, vol. 15(16), pages 1-21, August.
  44. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
  45. Du, Yan & Zandi, Helia & Kotevska, Olivera & Kurte, Kuldeep & Munk, Jeffery & Amasyali, Kadir & Mckee, Evan & Li, Fangxing, 2021. "Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 281(C).
  46. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
  47. Xiao, Boyi & Yang, Weiwei & Wu, Jiamin & Walker, Paul D. & Zhang, Nong, 2022. "Energy management strategy via maximum entropy reinforcement learning for an extended range logistics vehicle," Energy, Elsevier, vol. 253(C).
  48. Du, Guodong & Zou, Yuan & Zhang, Xudong & Guo, Lingxiong & Guo, Ningyuan, 2022. "Energy management for a hybrid electric vehicle based on prioritized deep reinforcement learning framework," Energy, Elsevier, vol. 241(C).
  49. Ziye Wang & Ren He & Donghai Hu & Dagang Lu, 2025. "Energy Management Strategy for Fuel Cell Vehicles Based on Deep Transfer Reinforcement Learning," Energies, MDPI, vol. 18(9), pages 1-18, April.
  50. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
  51. Tang, Tianfeng & Peng, Qianlong & Shi, Qing & Peng, Qingguo & Zhao, Jin & Chen, Chaoyi & Wang, Guangwei, 2024. "Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics," Energy, Elsevier, vol. 311(C).
  52. He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).
  53. Stefan Milićević & Ivan Blagojević & Saša Milojević & Milan Bukvić & Blaža Stojanović, 2024. "Numerical Analysis of Optimal Hybridization in Parallel Hybrid Electric Powertrains for Tracked Vehicles," Energies, MDPI, vol. 17(14), pages 1-19, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.