IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v193y2017icp1-14.html
   My bibliography  Save this item

A hybrid PV/T collector using spectrally selective absorbing nanofluids

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xiao, Yang & Bao, Yanqiong & Yu, Linfeng & Zheng, Xiong & Qin, Guangzhao & Chen, Meijie & He, Maogang, 2023. "Ultra-stable carbon quantum dot nanofluids as excellent spectral beam splitters in PV/T applications," Energy, Elsevier, vol. 273(C).
  2. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
  3. Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
  4. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
  5. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
  6. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
  7. Zhou, Yi-Peng & Li, Ming-Jia & Hu, Yi-Huang & Ma, Teng, 2020. "Design and experimental investigation of a novel full solar spectrum utilization system," Applied Energy, Elsevier, vol. 260(C).
  8. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
  9. Han, Xinyue & Chen, Xiaobin & Sun, Yao & Qu, Jian, 2020. "Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter," Energy, Elsevier, vol. 192(C).
  10. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Kirk, Alexander & Osowski, Mark & Cygan, David & Abbasi, Hamid, 2019. "Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600 °C," Applied Energy, Elsevier, vol. 239(C), pages 514-525.
  11. Yuan, Yu & Ji, Yaning & Wang, Wei & Shi, Dawei & Hai, Long & Ma, Qianlei & Yang, Qichang & Xie, Yuming & Li, Bin & Wu, Gang & Ma, Lingling, 2023. "Balancing energy harvesting and crop production in a nanofluid spectral splitting covering for an active solar greenhouse," Energy, Elsevier, vol. 278(C).
  12. Abdelrazik, A.S. & Saidur, R. & Al-Sulaiman, F.A., 2021. "Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter," Energy, Elsevier, vol. 215(PB).
  13. Li, Haoran & He, Yurong & Wang, Changhong & Wang, Xinzhi & Hu, Yanwei, 2019. "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications," Applied Energy, Elsevier, vol. 236(C), pages 117-126.
  14. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
  15. Al-Waeli, Ali H.A. & Chaichan, Miqdam T. & Kazem, Hussein A. & Sopian, K. & Ibrahim, Adnan & Mat, Sohif & Ruslan, Mohd Hafidz, 2018. "Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant," Energy, Elsevier, vol. 151(C), pages 33-44.
  16. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
  17. Elharoun, O. & Tawfik, M. & El-Sharkawy, Ibrahim I. & Zeidan, E., 2023. "Experimental investigation of photovoltaic performance with compound parabolic solar concentrator and fluid spectral filter," Energy, Elsevier, vol. 278(PA).
  18. Hjerrild, Natasha E. & Scott, Jason A. & Amal, Rose & Taylor, Robert A., 2018. "Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2 nanofluids for PV/T applications," Renewable Energy, Elsevier, vol. 120(C), pages 266-274.
  19. Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
  20. Otanicar, Todd P. & Wingert, Rhetta & Orosz, Matthew & McPheeters, Clay, 2020. "Concentrating photovoltaic retrofit for existing parabolic trough solar collectors: Design, experiments, and levelized cost of electricity," Applied Energy, Elsevier, vol. 265(C).
  21. Chen, Meijie & He, Yurong & Wang, Xinzhi & Hu, Yanwei, 2018. "Complementary enhanced solar thermal conversion performance of core-shell nanoparticles," Applied Energy, Elsevier, vol. 211(C), pages 735-742.
  22. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  23. Yu, Xiyu & Huang, Maoquan & Wang, Xinyu & Sun, Qie & Tang, G.H. & Du, Mu, 2022. "Toward optical selectivity aerogels by plasmonic nanoparticles doping," Renewable Energy, Elsevier, vol. 190(C), pages 741-751.
  24. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
  25. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
  26. Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
  27. Motamedi, Mahdi & Rafeie, Mehdi & Ebrahimnia Bajestan, Ehsan & Taylor, Robert A., 2021. "Mitigating the losses in nanofluid-based direct solar absorption receivers," Renewable Energy, Elsevier, vol. 178(C), pages 1174-1186.
  28. Adam, Saadelnour Abdueljabbar & Ju, Xing & Zhang, Zheyang & Abd El-Samie, Mostafa M. & Xu, Chao, 2019. "Theoretical investigation of different CPVT configurations based on liquid absorption spectral beam filter," Energy, Elsevier, vol. 189(C).
  29. Tang, Sanli & Hong, Hui & Jin, Hongguang & Xuan, Yimin, 2019. "A cascading solar hybrid system for co-producing electricity and solar syngas with nanofluid spectrum selector," Applied Energy, Elsevier, vol. 248(C), pages 231-240.
  30. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Yearly performance of a hybrid PV operating with nanofluid," Renewable Energy, Elsevier, vol. 113(C), pages 867-884.
  31. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.