IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v185y2017ip2p1984-1993.html
   My bibliography  Save this item

Thermal energy storage coupled with PV panels for demand side management of industrial building cooling loads

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hurtado, L.A. & Rhodes, J.D. & Nguyen, P.H. & Kamphuis, I.G. & Webber, M.E., 2017. "Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones," Applied Energy, Elsevier, vol. 195(C), pages 1047-1054.
  2. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
  3. Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
  4. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
  5. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2019. "Levelised Cost of Storage (LCOS) for solar-PV-powered cooling in the tropics," Applied Energy, Elsevier, vol. 242(C), pages 640-654.
  6. Alibabaei, Nima & Fung, Alan S. & Raahemifar, Kaamran & Moghimi, Arash, 2017. "Effects of intelligent strategy planning models on residential HVAC system energy demand and cost during the heating and cooling seasons," Applied Energy, Elsevier, vol. 185(P1), pages 29-43.
  7. Rosiek, Sabina & Romero-Cano, Manuel S. & Puertas, Antonio M. & Batlles, Francisco J., 2019. "Industrial food chamber cooling and power system integrated with renewable energy as an example of power grid sustainability improvement," Renewable Energy, Elsevier, vol. 138(C), pages 697-708.
  8. Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
  9. Wu, Wei & Bai, Yu & Huang, Hongyu & Ding, Zhixiong & Deng, Lisheng, 2019. "Charging and discharging characteristics of absorption thermal energy storage using ionic-liquid-based working fluids," Energy, Elsevier, vol. 189(C).
  10. Romaní, Joaquim & Belusko, Martin & Alemu, Alemu & Cabeza, Luisa F. & de Gracia, Alvaro & Bruno, Frank, 2018. "Control concepts of a radiant wall working as thermal energy storage for peak load shifting of a heat pump coupled to a PV array," Renewable Energy, Elsevier, vol. 118(C), pages 489-501.
  11. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
  12. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong & He, Xihua, 2017. "Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China," Energy, Elsevier, vol. 140(P1), pages 584-600.
  13. Huang, Yongping & Liu, Xiangdong, 2021. "Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins," Renewable Energy, Elsevier, vol. 174(C), pages 199-217.
  14. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
  15. Comodi, Gabriele & Carducci, Francesco & Sze, Jia Yin & Balamurugan, Nagarajan & Romagnoli, Alessandro, 2017. "Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies," Energy, Elsevier, vol. 121(C), pages 676-694.
  16. Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.
  17. Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
  18. Angizeh, Farhad & Ghofrani, Ali & Zaidan, Esmat & Jafari, Mohsen A., 2022. "Adaptable scheduling of smart building communities with thermal mapping and demand flexibility," Applied Energy, Elsevier, vol. 310(C).
  19. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
  20. Lee, Junghun & Kim, Seohoon & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Thermal performance evaluation of low-income buildings based on indoor temperature performance," Applied Energy, Elsevier, vol. 221(C), pages 425-436.
  21. Fernandez, Edstan & Hossain, M.J. & Nizami, M.S.H., 2018. "Game-theoretic approach to demand-side energy management for a smart neighbourhood in Sydney incorporating renewable resources," Applied Energy, Elsevier, vol. 232(C), pages 245-257.
  22. Zauner, Christoph & Hengstberger, Florian & Mörzinger, Benjamin & Hofmann, Rene & Walter, Heimo, 2017. "Experimental characterization and simulation of a hybrid sensible-latent heat storage," Applied Energy, Elsevier, vol. 189(C), pages 506-519.
  23. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
  24. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
  25. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  26. Hugo Algarvio & Fernando Lopes, 2023. "Bilateral Contracting and Price-Based Demand Response in Multi-Agent Electricity Markets: A Study on Time-of-Use Tariffs," Energies, MDPI, vol. 16(2), pages 1-17, January.
  27. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang, 2019. "Flexible dispatch of a building energy system using building thermal storage and battery energy storage," Applied Energy, Elsevier, vol. 243(C), pages 274-287.
  28. Lee, Junghun & Yoo, Seunghwan & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response," Energy, Elsevier, vol. 144(C), pages 1052-1063.
  29. Michael Lanahan & Paulo Cesar Tabares-Velasco, 2017. "Seasonal Thermal-Energy Storage: A Critical Review on BTES Systems, Modeling, and System Design for Higher System Efficiency," Energies, MDPI, vol. 10(6), pages 1-24, May.
  30. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
  31. Ding, Zhixiong & Wu, Wei, 2021. "A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature," Applied Energy, Elsevier, vol. 282(PA).
  32. Hannu S. Laine & Jyri Salpakari & Erin E. Looney & Hele Savin & Ian Marius Peters & Tonio Buonassisi, 2019. "Meeting Global Cooling Demand with Photovoltaics during the 21st Century," Papers 1902.10080, arXiv.org.
  33. Anastasia Stamatiou & Lukas Müller & Roger Zimmermann & Jamie Hillis & David Oliver & Kate Fisher & Maurizio Zaglio & Jörg Worlitschek, 2021. "Experimental Characterization of Phase Change Materials for Refrigeration Processes," Energies, MDPI, vol. 14(11), pages 1-14, May.
  34. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
  35. Ren, Haoshan & Ma, Zhenjun & Ming Lun Fong, Alan & Sun, Yongjun, 2022. "Optimal deployment of distributed rooftop photovoltaic systems and batteries for achieving net-zero energy of electric bus transportation in high-density cities," Applied Energy, Elsevier, vol. 319(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.