IDEAS home Printed from https://ideas.repec.org/r/ecm/emetrp/v69y2001i3p765-69.html

Direct Proofs of Generic Finiteness of Nash Equilibrium Outcomes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Govindan, Srihari & Wilson, Robert B., 2005. "Justification of Stable Equilibria," Research Papers 1896, Stanford University, Graduate School of Business.
  2. Meroni, Claudia & Pimienta, Carlos, 2017. "The structure of Nash equilibria in Poisson games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 128-144.
  3. Bich, Philippe & Fixary, Julien, 2022. "Network formation and pairwise stability: A new oddness theorem," Journal of Mathematical Economics, Elsevier, vol. 103(C).
  4. , & ,, 2010. "A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification," Theoretical Economics, Econometric Society, vol. 5(3), September.
  5. Philippe Bich & Julien Fixary, 2021. "Structure and oddness theorems for pairwise stable networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03287524, HAL.
  6. Litan, Cristian & Marhuenda, Francisco & Sudhölter, Peter, 2015. "Determinacy of equilibrium in outcome game forms," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 28-32.
  7. Pimienta, Carlos, 2010. "Generic finiteness of outcome distributions for two-person game forms with three outcomes," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 364-365, May.
  8. Govindan, Srihari & Wilson, Robert B., 2007. "Stable Outcomes of Generic Games in Extensive Form," Research Papers 1933r, Stanford University, Graduate School of Business.
  9. Srihari Govindan & Robert Wilson, 2012. "Axiomatic Equilibrium Selection for Generic Two‐Player Games," Econometrica, Econometric Society, vol. 80(4), pages 1639-1699, July.
  10. Kukushkin, Nikolai S. & Litan, Cristian M. & Marhuenda, Francisco, 2008. "On the generic finiteness of equilibrium outcome distributions in bimatrix game forms," Journal of Economic Theory, Elsevier, vol. 139(1), pages 392-395, March.
  11. Srihari Govindan & Robert Wilson, 2009. "On Forward Induction," Econometrica, Econometric Society, vol. 77(1), pages 1-28, January.
  12. Stefano Matta, 2023. "A note on local uniqueness of equilibria: How isolated is a local equilibrium?," Economics Bulletin, AccessEcon, vol. 43(3), pages 1389-1394.
  13. Philippe Bich & Julien Fixary, 2021. "Oddness of the number of Nash equilibria: the Case of Polynomial Payoff Functions," Documents de travail du Centre d'Economie de la Sorbonne 21027, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  14. Philippe Bich & Julien Fixary, 2021. "Structure and oddness theorems for pairwise stable networks," Post-Print halshs-03287524, HAL.
  15. Fixary, Julien, 2025. "Unknottedness of graphs of pairwise stable networks & network dynamics," Journal of Mathematical Economics, Elsevier, vol. 120(C).
  16. Govindan, Srihari & Wilson, Robert B., 2008. "Decision-Theoretic Forward Induction," Research Papers 1986, Stanford University, Graduate School of Business.
  17. Srihari Govindan & Robert Wilson, 2008. "Axiomatic Theory of Equilibrium Selection in Signalling Games with Generic Payoffs," Levine's Working Paper Archive 122247000000002381, David K. Levine.
  18. , & , B., 2006. "Sufficient conditions for stable equilibria," Theoretical Economics, Econometric Society, vol. 1(2), pages 167-206, June.
  19. Srihari Govindan & Robert Wilson, 2008. "Metastable Equilibria," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 787-820, November.
  20. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
  21. Eleonora Braggion & Nicola Gatti & Roberto Lucchetti & Tuomas Sandholm & Bernhard von Stengel, 2020. "Strong Nash equilibria and mixed strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(3), pages 699-710, September.
  22. Tadashi Yagi, 2014. "Knowledge Creation by Consumers and Optimal Strategies of Firms," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(3), pages 585-596, September.
  23. Bich, Philippe & Fixary, Julien, 2024. "Oddness of the number of Nash equilibria: The case of polynomial payoff functions," Games and Economic Behavior, Elsevier, vol. 145(C), pages 510-525.
  24. Philippe Bich & Julien Fixary, 2021. "Oddness of the number of Nash equilibria: the case of polynomial payoff functions," Post-Print halshs-03354269, HAL.
  25. Francesco Sinopoli & Giovanna Iannantuoni & Carlos Pimienta, 2015. "On stable outcomes of approval, plurality, and negative plurality games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 889-909, April.
  26. Ritzberger, Klaus & Weibull, Jörgen W. & Wikman, Peter, 2025. "Solid outcomes in finite games," Journal of Economic Theory, Elsevier, vol. 224(C).
  27. Philippe Bich & Julien Fixary, 2021. "Oddness of the number of Nash equilibria: the case of polynomial payoff functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03354269, HAL.
  28. Yukio KORIYAMA & Matias Nunez, 2014. "Hybrid Procedures," Thema Working Papers 2014-02, THEMA (Théorie Economique, Modélisation et Applications), CY Cergy-Paris University, ESSEC and CNRS.
  29. Takahashi, Satoru & Tercieux, Olivier, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Journal of Economic Theory, Elsevier, vol. 188(C).
  30. Xiao Luo & Xuewen Qian & Yang Sun, 2021. "The algebraic geometry of perfect and sequential equilibrium: an extension," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 579-601, March.
  31. Predtetchinski, Arkadi, 2009. "A general structure theorem for the Nash equilibrium correspondence," Games and Economic Behavior, Elsevier, vol. 66(2), pages 950-958, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.