IDEAS home Printed from https://ideas.repec.org/r/cwl/cwldpp/1166.html
   My bibliography  Save this item

Multifractality of Deutschemark/US Dollar Exchange Rates

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
  2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
  3. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
  4. Assaf, A., 2006. "Dependence and mean reversion in stock prices: The case of the MENA region," Research in International Business and Finance, Elsevier, vol. 20(3), pages 286-304, September.
  5. Haider Ali & Faheem Aslam & Paulo Ferreira, 2021. "Modeling Dynamic Multifractal Efficiency of US Electricity Market," Energies, MDPI, vol. 14(19), pages 1-16, September.
  6. Skjeltorp, Johannes A, 2000. "Scaling in the Norwegian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 486-528.
  7. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
  8. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
  9. Lux, Thomas & Kaizoji, Taisei, 2004. "Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models," Economics Working Papers 2004-05, Christian-Albrechts-University of Kiel, Department of Economics.
  10. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
  11. Marc-Etienne BRACHET & Erik TAFLIN & Jean Marcel TCHEOU, 1999. "Scaling transformation and probability distributions for financial time series," GE, Growth, Math methods 9901003, University Library of Munich, Germany.
  12. Thomas Lux, 2003. "The Multi-Fractal Model of Asset Returns:Its Estimation via GMM and Its Use for Volatility Forecasting," Computing in Economics and Finance 2003 14, Society for Computational Economics.
  13. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(632), A), pages 61-80, Autumn.
  14. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
  15. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
  16. Mulligan, Robert F. & Lombardo, Gary A., 2004. "Maritime businesses: volatile stock prices and market valuation inefficiencies," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(2), pages 321-336, May.
  17. Céline Azizieh & Wolfgang Breymann, 2005. "Estimation of the Stylized Facts of a Stochastic Cascade Model," Working Papers CEB 05-009.RS, ULB -- Universite Libre de Bruxelles.
  18. Hallam, Mark & Olmo, Jose, 2014. "Forecasting daily return densities from intraday data: A multifractal approach," International Journal of Forecasting, Elsevier, vol. 30(4), pages 863-881.
  19. repec:ebl:ecbull:v:3:y:2003:i:31:p:1-12 is not listed on IDEAS
  20. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
  21. Rossitsa Yalamova, 2012. "Fractal Measures in Market Microstructure Research," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 137-154, March - J.
  22. Baviera, Roberto & Vergni, Davide & Vulpiani, Angelo, 2000. "Markovian approximation in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 566-581.
  23. Laurent Calvet & Adlai Fisher & Benoit Mandelbrot, 1997. "Large Deviations and the Distribution of Price Changes," Cowles Foundation Discussion Papers 1165, Cowles Foundation for Research in Economics, Yale University.
  24. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
  25. Assaf, Ata, 2015. "Long memory and level shifts in REITs returns and volatility," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 172-182.
  26. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
  27. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
  28. Suárez-García, Pablo & Gómez-Ullate, David, 2014. "Multifractality and long memory of a financial index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 226-234.
  29. Scarlat, E.I. & Stan, Cristina & Cristescu, C.P., 2007. "Self-similar characteristics of the currency exchange rate in an economy in transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 188-198.
  30. Stošić, Darko & Stošić, Dusan & Stošić, Tatijana & Stanley, H. Eugene, 2015. "Multifractal analysis of managed and independent float exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 13-18.
  31. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
  32. Stanislaw Drozdz & Jaroslaw Kwapien & Pawel Oswiecimka & Rafal Rak, 2010. "The foreign exchange market: return distributions, multifractality, anomalous multifractality and Epps effect," Papers 1011.2385, arXiv.org.
  33. Selçuk, Faruk, 2004. "Financial earthquakes, aftershocks and scaling in emerging stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 306-316.
  34. Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
  35. Aloui, Chaker & Shahzad, Syed Jawad Hussain & Jammazi, Rania, 2018. "Dynamic efficiency of European credit sectors: A rolling-window multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 337-349.
  36. Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon, 2001. "Differentiating intraday seasonalities through wavelet multi-scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 543-556.
  37. Wesselhöfft, Niels & Härdle, Wolfgang Karl, 2019. "Estimating low sampling frequency risk measure by high-frequency data," IRTG 1792 Discussion Papers 2019-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.