IDEAS home Printed from https://ideas.repec.org/r/cup/astinb/v37y2007i02p265-291_01.html
   My bibliography  Save this item

The Quantitative Modeling of Operational Risk: Between G-and-H and EVT

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00544342, HAL.
  2. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
  3. Balkema, A.A. & Embrechts, P. & Nolde, N., 2010. "Meta densities and the shape of their sample clouds," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1738-1754, August.
  4. Mao, Tiantian & Lv, Wenhua & Hu, Taizhong, 2012. "Second-order expansions of the risk concentration based on CTE," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 449-456.
  5. Gareth W. Peters & Wilson Y. Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-moments," Papers 1603.01041, arXiv.org.
  6. Marco Bee & Julien Hambuckers & Luca Trapin, 2019. "An improved approach for estimating large losses in insurance analytics and operational risk using the g-and-h distribution," DEM Working Papers 2019/11, Department of Economics and Management.
  7. Dominik D. Lambrigger & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "The Quantification of Operational Risk using Internal Data, Relevant External Data and Expert Opinions," Papers 0904.1361, arXiv.org.
  8. Joan del castillo & Jalila Daoudi & Isabel Serra, 2012. "The full-tails gamma distribution applied to model extreme values," Papers 1211.0130, arXiv.org.
  9. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
  10. Feria-Domínguez, José Manuel & Jiménez-Rodríguez, Enrique & Sholarin, Ola, 2015. "Tackling the over-dispersion of operational risk: Implications on capital adequacy requirements," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 206-221.
  11. M. Bee & J. Hambuckers & L. Trapin, 2019. "Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1255-1266, August.
  12. Mora Valencia Andrés, 2014. "El uso de la distribución g-h en riesgo operativo," Contaduría y Administración, Accounting and Management, vol. 59(1), pages 123-148, enero-mar.
  13. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
  14. Enrico Biffis & Erik Chavez, 2014. "Tail Risk in Commercial Property Insurance," Risks, MDPI, vol. 2(4), pages 1-18, September.
  15. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 541-546, June.
  16. Marco Bee & Julien Hambuckers & Flavio Santi & Luca Trapin, 2021. "Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach," Computational Statistics, Springer, vol. 36(3), pages 2177-2200, September.
  17. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Papers 1502.00882, arXiv.org.
  18. Sinemis Zengin & Serhat Yuksel, 2016. "A Comparison of the Views of Internal Controllers/Auditors and Branch/Call Center Personnel of the Banks for Operational Risk: A Case for Turkish Banking Sector," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(4), pages 10-29, July.
  19. Ghosh, Souvik & Resnick, Sidney, 2010. "A discussion on mean excess plots," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1492-1517, August.
  20. Xu, Ganggang & Genton, Marc G., 2015. "Efficient maximum approximated likelihood inference for Tukey’s g-and-h distribution," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 78-91.
  21. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
  22. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
  23. Gareth W. Peters & Wilson Ye Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments," Risks, MDPI, vol. 4(2), pages 1-41, May.
  24. Hofert, Marius & McNeil, Alexander J., 2015. "Subadditivity of Value-at-Risk for Bernoulli random variables," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 79-88.
  25. Bee, Marco, 2025. "A parsimonious dynamic mixture for heavy-tailed distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 230(C), pages 193-206.
  26. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.
  27. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
  28. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
  29. Francisco Venegas-Martínez & José Francisco Martínez-Sánchez & María Teresa V. Martínez-Palacios, 2016. "An analysis on operational risk in international banking: A Bayesian approach (2007–2011)," Estudios Gerenciales, Universidad Icesi, vol. 32(140), pages 208-220, September.
  30. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
  31. J. D. Opdyke, 2014. "Estimating Operational Risk Capital with Greater Accuracy, Precision, and Robustness," Papers 1406.0389, arXiv.org, revised Nov 2014.
  32. José Francisco Martínez-Sánchez & Francisco Venegas-Martínez, 2013. "Riesgo operacional en la banca trasnacional: un enfoque bayesiano," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 31-72, May.
  33. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
  34. Udo Milkau & Jürgen Bott, 2018. "Active Management of Operational Risk in the Regimes of the “Unknown”: What Can Machine Learning or Heuristics Deliver?," Risks, MDPI, vol. 6(2), pages 1-16, April.
  35. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
  36. Daniel Hadley & Harry Joe & Natalia Nolde, 2021. "On the Selection of Loss Severity Distributions to Model Operational Risk," Papers 2107.03979, arXiv.org.
  37. Marco Bee, 2022. "The truncated g-and-h distribution: estimation and application to loss modeling," Computational Statistics, Springer, vol. 37(4), pages 1771-1794, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.