IDEAS home Printed from https://ideas.repec.org/r/bla/jorssa/v178y2015i3p493-533.html
   My bibliography  Save this item

Classical time varying factor-augmented vector auto-regressive models—estimation, forecasting and structural analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
  2. Angela Abbate & Sandra Eickmeier & Wolfgang Lemke & Massimiliano Marcellino, 2016. "The Changing International Transmission of Financial Shocks: Evidence from a Classical Time‐Varying FAVAR," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(4), pages 573-601, June.
  3. Duván Humberto Cataño & Carlos Vladimir Rodríguez-Caballero & Daniel Peña, 2019. "Wavelet Estimation for Dynamic Factor Models with Time-Varying Loadings," CREATES Research Papers 2019-23, Department of Economics and Business Economics, Aarhus University.
  4. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
  5. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
  6. Corradin, Stefano & Grimm, Niklas & Schwaab, Bernd, 2021. "Euro area sovereign bond risk premia during the Covid-19 pandemic," Working Paper Series 2561, European Central Bank.
  7. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2020. "The economic drivers of volatility and uncertainty," Temi di discussione (Economic working papers) 1285, Bank of Italy, Economic Research and International Relations Area.
  8. Ying Lun Cheung, 2024. "Identification of Time-Varying Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 76-94, January.
  9. Paolo Gorgi & Siem Jan Koopman & Julia Schaumburg, 2021. "Vector Autoregressions with Dynamic Factor Coefficients and Conditionally Heteroskedastic Errors," Tinbergen Institute Discussion Papers 21-056/III, Tinbergen Institute.
  10. Massimo Guidolin & Valentina Massagli & Manuela Pedio, 2021. "Does the cost of private debt respond to monetary policy? Heteroskedasticity-based identification in a model with regimes," The European Journal of Finance, Taylor & Francis Journals, vol. 27(18), pages 1804-1833, December.
  11. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
  12. Mikkelsen, Jakob Guldbæk & Hillebrand, Eric & Urga, Giovanni, 2019. "Consistent estimation of time-varying loadings in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 208(2), pages 535-562.
  13. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
  14. Gorgi, Paolo & Koopman, Siem Jan & Schaumburg, Julia, 2024. "Vector autoregressions with dynamic factor coefficients and conditionally heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 244(2).
  15. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
  16. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
  17. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
  18. Karin Klieber, 2023. "Non-linear dimension reduction in factor-augmented vector autoregressions," Papers 2309.04821, arXiv.org.
  19. Shikha Gupta & Nand Kumar, 2023. "Time varying dynamics of globalization effect in India," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 22(1), pages 81-97, January.
  20. Rudrani Bhattacharya & Parma Chakravartti & Sudipto Mundle, 2019. "Forecasting India’s economic growth: a time-varying parameter regression approach," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 12(3), pages 205-228, September.
  21. Fu, Zhonghao & Hong, Yongmiao & Wang, Xia, 2023. "Testing for structural changes in large dimensional factor models via discrete Fourier transform," Journal of Econometrics, Elsevier, vol. 233(1), pages 302-331.
  22. Juan S. Holguín & Jorge M. Uribe, 2020. "The credit supply channel of monetary policy: evidence from a FAVAR model with sign restrictions," Empirical Economics, Springer, vol. 59(5), pages 2443-2472, November.
  23. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
  24. Sungurtekin Hallam, Bahar, 2022. "Emerging market responses to external shocks: A cross-country analysis," Economic Modelling, Elsevier, vol. 115(C).
  25. Riccardo Borghi & Eric Hillebrand & Jakob Mikkelsen & Giovanni Urga, 2018. "The dynamics of factor loadings in the cross-section of returns," CREATES Research Papers 2018-38, Department of Economics and Business Economics, Aarhus University.
  26. Yanhong Feng & Dilong Xu & Pierre Failler & Tinghui Li, 2020. "Research on the Time-Varying Impact of Economic Policy Uncertainty on Crude Oil Price Fluctuation," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
  27. Reza Najarzadeh & Alireza Keikha & Hassan Heydari, 2021. "Dynamics of consumption distribution and economic fluctuations," Economic Change and Restructuring, Springer, vol. 54(3), pages 847-876, August.
  28. Mathias Klein & Ludger Linnemann, 2018. "Macroeconomic Effects of Government Spending: The Great Recession Was (Really) Different," Discussion Papers of DIW Berlin 1754, DIW Berlin, German Institute for Economic Research.
  29. Masud Alam, 2024. "Output, employment, and price effects of U.S. narrative tax changes: a factor-augmented vector autoregression approach," Empirical Economics, Springer, vol. 67(4), pages 1421-1471, October.
  30. Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
  31. Herwartz, Helmut & Rohloff, Hannes, 2018. "Less bang for the buck? Assessing the role of inflation uncertainty for U.S. monetary policy transmission in a data rich environment," University of Göttingen Working Papers in Economics 358, University of Goettingen, Department of Economics.
  32. Guidolin, Massimo & Hansen, Erwin & Pedio, Manuela, 2019. "Cross-asset contagion in the financial crisis: A Bayesian time-varying parameter approach," Journal of Financial Markets, Elsevier, vol. 45(C), pages 83-114.
  33. Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
  34. Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
  35. Corradin, Stefano & Schwaab, Bernd, 2023. "Euro area sovereign bond risk premia before and during the Covid-19 pandemic," European Economic Review, Elsevier, vol. 153(C).
  36. Han, Xu, 2018. "Estimation and inference of dynamic structural factor models with over-identifying restrictions," Journal of Econometrics, Elsevier, vol. 202(2), pages 125-147.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.