IDEAS home Printed from https://ideas.repec.org/r/arx/papers/physics-0511101.html
   My bibliography  Save this item

Scaling and memory of intraday volatility return intervals in stock market

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sousa, Tânia & Domingos, Tiago, 2006. "Equilibrium econophysics: A unified formalism for neoclassical economics and equilibrium thermodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 492-512.
  2. Corral, Álvaro, 2015. "Scaling in the timing of extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 99-112.
  3. Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2018. "Short term prediction of extreme returns based on the recurrence interval analysis," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 353-370, March.
  4. Zhi-Qiang Jiang & Askery Canabarro & Boris Podobnik & H. Eugene Stanley & Wei-Xing Zhou, 2016. "Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1713-1724, November.
  5. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
  6. Gontis, V. & Havlin, S. & Kononovicius, A. & Podobnik, B. & Stanley, H.E., 2016. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1091-1102.
  7. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
  8. Tsai, Kuo-Ting & Lih, Jiann-Shing & Ko, Jing-Yuan, 2012. "The overnight effect on the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6497-6505.
  9. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.
  10. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
  11. Gontis, V. & Kononovicius, A., 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 266-272.
  12. Stošić, Darko & Stošić, Dusan & Stošić, Tatijana & Stanley, H. Eugene, 2015. "Multifractal analysis of managed and independent float exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 13-18.
  13. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
  14. Li, Wei-Zhen & Zhai, Jin-Rui & Jiang, Zhi-Qiang & Wang, Gang-Jin & Zhou, Wei-Xing, 2022. "Predicting tail events in a RIA-EVT-Copula framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  15. Zhao, Xiaojun & Zhang, Pengyuan, 2020. "Multiscale horizontal visibility entropy: Measuring the temporal complexity of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  16. Jia, Linlu & Ke, Jinchuan & Wang, Jun, 2019. "Volatility aggregation intensity energy futures series on stochastic finite-range exclusion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 370-383.
  17. B. Zhang & J. Wang & W. Zhang & G. C. Wang, 2020. "Nonlinear Scaling Behavior of Visible Volatility Duration for Financial Statistical Physics Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 373-389, August.
  18. Chicheportiche, Rémy & Chakraborti, Anirban, 2017. "A model-free characterization of recurrences in stationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 312-318.
  19. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
  20. Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
  21. Oh, Gabjin & Kim, Ho-yong & Ahn, Seok-Won & Kwak, Wooseop, 2015. "Analyzing the financial crisis using the entropy density function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 464-469.
  22. Xing, Yani & Wang, Jun, 2019. "Statistical volatility duration and complexity of financial dynamics on Sierpinski gasket lattice percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 234-247.
  23. Zheng, Zeyu & Gui, Jun & Qiao, Zhi & Fu, Yang & Stanley, H.Eugene & Li, Baowen, 2019. "New dynamics between volume and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1343-1350.
  24. Niu, Hongli & Wang, Jun & Lu, Yunfan, 2016. "Fluctuation behaviors of financial return volatility duration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 30-40.
  25. Vygintas Gontis & Shlomo Havlin & Aleksejus Kononovicius & Boris Podobnik & H. Eugene Stanley, 2015. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Papers 1507.05203, arXiv.org, revised Oct 2016.
  26. Chen, Yingyuan & Cai, Lihui & Wang, Ruofan & Song, Zhenxi & Deng, Bin & Wang, Jiang & Yu, Haitao, 2018. "DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 171-184.
  27. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
  28. Ribeiro, H.V. & Mendes, R.S. & Lenzi, E.K. & Belancon, M.P. & Malacarne, L.C., 2011. "On the dynamics of bubbles in boiling water," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 178-183.
  29. Pichl, Lukáš & Kaizoji, Taisei & Yamano, Takuya, 2007. "Stylized facts in internal rates of return on stock index and its derivative transactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 219-227.
  30. Gontis, V. & Kononovicius, A., 2018. "The consentaneous model of the financial markets exhibiting spurious nature of long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1075-1083.
  31. Andreas Grönlund & Il Gu Yi & Beom Jun Kim, 2012. "Fractal Profit Landscape of the Stock Market," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-5, April.
  32. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
  33. de Mattos Neto, Paulo S.G. & Silva, David A. & Ferreira, Tiago A.E. & Cavalcanti, George D.C., 2011. "Market volatility modeling for short time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3444-3453.
  34. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
  35. Albarracín E., Eva Susana & Gamboa, Juan C. Rodríguez & Marques, Elaine C.M. & Stosic, Tatijana, 2019. "Complexity analysis of Brazilian agriculture and energy market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 933-941.
  36. Zhou, Weijie & Wang, Zhengxin & Guo, Haiming, 2016. "Modelling volatility recurrence intervals in the Chinese commodity futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 514-525.
  37. Jiang, X.F. & Chen, T.T. & Zheng, B., 2013. "Time-reversal asymmetry in financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5369-5375.
  38. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2020. "Fluctuation and volatility dynamics of stochastic interacting energy futures price model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.