IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i3p353-370.html
   My bibliography  Save this article

Short term prediction of extreme returns based on the recurrence interval analysis

Author

Listed:
  • Zhi-Qiang Jiang
  • Gang-Jin Wang
  • Askery Canabarro
  • Boris Podobnik
  • Chi Xie
  • H. Eugene Stanley
  • Wei-Xing Zhou

Abstract

Being able to predict the occurrence of extreme returns is important in financial risk management. Using the distribution of recurrence intervals—the waiting time between consecutive extremes—we show that these extreme returns are predictable in the short term. Examining a range of different types of returns and thresholds we find that recurrence intervals follow a q-exponential distribution, which we then use to theoretically derive the hazard probability W(Δt|t)$ W(\Delta t |t) $. Maximizing the usefulness of extreme forecasts to define an optimized hazard threshold, we indicate a financial extreme occurring within the next day when the hazard probability is greater than the optimized threshold. Both in-sample tests and out-of-sample predictions indicate that these forecasts are more accurate than a benchmark that ignores the predictive signals. This recurrence interval finding deepens our understanding of reoccurring extreme returns and can be applied to forecast extremes in risk management.

Suggested Citation

  • Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2018. "Short term prediction of extreme returns based on the recurrence interval analysis," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 353-370, March.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:3:p:353-370
    DOI: 10.1080/14697688.2017.1373843
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2017.1373843
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    2. Lainà, Patrizio & Nyholm, Juho & Sarlin, Peter, 2015. "Leading indicators of systemic banking crises: Finland in a panel of EU countries," Review of Financial Economics, Elsevier, vol. 24(C), pages 18-35.
    3. Sarlin, Peter, 2013. "On policymakers’ loss functions and the evaluation of early warning systems," Economics Letters, Elsevier, vol. 119(1), pages 1-7.
    4. Babecký, Jan & Havránek, Tomáš & Matějů, Jakub & Rusnák, Marek & Šmídková, Kateřina & Vašíček, Bořek, 2014. "Banking, debt, and currency crises in developed countries: Stylized facts and early warning indicators," Journal of Financial Stability, Elsevier, vol. 15(C), pages 1-17.
    5. Christensen, Ian & Li, Fuchun, 2014. "Predicting financial stress events: A signal extraction approach," Journal of Financial Stability, Elsevier, vol. 14(C), pages 54-65.
    6. Helmut Herwartz & Konstantin A. Kholodilin, 2014. "In‐Sample and Out‐of‐Sample Prediction of stock Market Bubbles: Cross‐Sectional Evidence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 15-31, January.
    7. Alessi, Lucia & Detken, Carsten, 2011. "Quasi real time early warning indicators for costly asset price boom/bust cycles: A role for global liquidity," European Journal of Political Economy, Elsevier, vol. 27(3), pages 520-533, September.
    8. Hali J. Edison, 2003. "Do indicators of financial crises work? An evaluation of an early warning system," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 8(1), pages 11-53.
    9. Wei Li & Fengzhong Wang & Shlomo Havlin & H. Eugene Stanley, 2011. "Financial factor influence on scaling and memory of trading volume in stock market," Papers 1106.1415, arXiv.org.
    10. Fei Ren & Wei-Xing Zhou, 2010. "Recurrence interval analysis of trading volumes," Papers 1002.1653, arXiv.org.
    11. Didier SORNETTE & Guilherme DEMOS & Zhang QUN & Peter CAUWELS & Vladimir FILIMONOV & Qunzhi ZHANG, 2015. "Real-Time Prediction and Post-Mortem Analysis of the Shanghai 2015 Stock Market Bubble and Crash," Swiss Finance Institute Research Paper Series 15-32, Swiss Finance Institute.
    12. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    13. Coudert, Virginie & Gex, Mathieu, 2008. "Does risk aversion drive financial crises? Testing the predictive power of empirical indicators," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 167-184, March.
    14. Wanfeng Yan & Edgar van Tuyll van Serooskerken, 2015. "Forecasting Financial Extremes: A Network Degree Measure of Super-exponential Growth," Papers 1505.04060, arXiv.org.
    15. Barrell, Ray & Davis, E. Philip & Karim, Dilruba & Liadze, Iana, 2010. "Bank regulation, property prices and early warning systems for banking crises in OECD countries," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2255-2264, September.
    16. Chen, Shiu-Sheng, 2009. "Predicting the bear stock market: Macroeconomic variables as leading indicators," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 211-223, February.
    17. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    18. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    19. Juan C. Reboredo & Miguel A. Rivera-Castro & Edilson Machado de Assis, 2014. "Power-law behaviour in time durations between extreme returns," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2171-2183, December.
    20. Li, Wei-Xuan & Chen, Clara Chia-Sheng & French, Joseph J., 2015. "Toward an early warning system of financial crises: What can index futures and options tell us?," The Quarterly Review of Economics and Finance, Elsevier, vol. 55(C), pages 87-99.
    21. Fengzhong Wang & Kazuko Yamasaki & Shlomo Havlin & H. Eugene Stanley, 2005. "Scaling and memory of intraday volatility return intervals in stock market," Papers physics/0511101, arXiv.org.
    22. Betz, Frank & Oprică, Silviu & Peltonen, Tuomas A. & Sarlin, Peter, 2014. "Predicting distress in European banks," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 225-241.
    23. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    24. Jiang, Zhi-Qiang & Zhou, Wei-Xing & Sornette, Didier & Woodard, Ryan & Bastiaensen, Ken & Cauwels, Peter, 2010. "Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 149-162, June.
    25. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    26. Suo, Yuan-Yuan & Wang, Dong-Hua & Li, Sai-Ping, 2015. "Risk estimation of CSI 300 index spot and futures in China from a new perspective," Economic Modelling, Elsevier, vol. 49(C), pages 344-353.
    27. Lang, Michael & Schmidt, Paul G., 2016. "The early warnings of banking crises: Interaction of broad liquidity and demand deposits," Journal of International Money and Finance, Elsevier, vol. 61(C), pages 1-29.
    28. Canbas, Serpil & Cabuk, Altan & Kilic, Suleyman Bilgin, 2005. "Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case," European Journal of Operational Research, Elsevier, vol. 166(2), pages 528-546, October.
    29. Chan, Louis K C & Jegadeesh, Narasimhan & Lakonishok, Josef, 1996. " Momentum Strategies," Journal of Finance, American Finance Association, vol. 51(5), pages 1681-1713, December.
    30. Peng, Duan & Bajona, Claustre, 2008. "China's vulnerability to currency crisis: A KLR signals approach," China Economic Review, Elsevier, vol. 19(2), pages 138-151, June.
    31. Alexander M. Petersen & Fengzhong Wang & Shlomo Havlin & H. Eugene Stanley, 2010. "Market dynamics immediately before and after financial shocks: quantifying the Omori, productivity and Bath laws," Papers 1006.1882, arXiv.org, revised Oct 2010.
    32. Andreas Joseph & Stephan Joseph & Guanrong Chen, 2013. "Cross-border Portfolio Investment Networks and Indicators for Financial Crises," Papers 1306.0215, arXiv.org, revised Jan 2014.
    33. El-Shagi, M. & Knedlik, T. & von Schweinitz, G., 2013. "Predicting financial crises: The (statistical) significance of the signals approach," Journal of International Money and Finance, Elsevier, vol. 35(C), pages 76-103.
    34. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    35. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    36. R'emy Chicheportiche & Anirban Chakraborti, 2013. "A model-free characterization of recurrences in stationary time series," Papers 1302.3704, arXiv.org, revised Sep 2013.
    37. Greco, Antonella & Sorriso-Valvo, Luca & Carbone, Vincenzo & Cidone, Stefano, 2008. "Waiting time distributions of the volatility in the Italian MIB30 index: Clustering or Poisson functions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4272-4284.
    38. Camelia Minoiu & Chanhyun Kang & V.S. Subrahmanian & Anamaria Berea, 2015. "Does financial connectedness predict crises?," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 607-624, April.
    39. Sornette, Didier & Cauwels, Peter, 2015. "Financial Bubbles: Mechanisms and Diagnostics," Review of Behavioral Economics, now publishers, vol. 2(3), pages 279-305, October.
    40. Jeong-Ryeol Kurz-Kim, 2012. "Early warning indicator for financial crashes using the log periodic power law," Applied Economics Letters, Taylor & Francis Journals, vol. 19(15), pages 1465-1469, October.
    41. Huai-Long Shi & Zhi-Qiang Jiang & Wei-Xing Zhou, 2015. "Profitability of contrarian strategies in the Chinese stock market," Papers 1505.00328, arXiv.org.
    42. Fabrizio Lillo & Rosario N. Mantegna, 2001. "Power law relaxation in a complex system: Omori law after a financial market crash," Papers cond-mat/0111257, arXiv.org, revised Jun 2003.
    43. Rémy Chicheportiche & Anirban Chakraborti, 2014. "Copulas and time series with long-ranged dependencies," Post-Print hal-00977135, HAL.
    44. M. S. Santhanam & Holger Kantz, 2008. "Return interval distribution of extreme events and long term memory," Papers 0803.1706, arXiv.org.
    45. Chia-Chien Chang & Te-Chung Hu & Chiu-Fen Kao & Ya-Chi Chang, 2015. "Early warning signals using AVaRs of infinitely divisible GARCH models -- evidence from stock index markets," Applied Economics, Taylor & Francis Journals, vol. 47(43), pages 4630-4652, September.
    46. Cumperayot, Phornchanok & Kouwenberg, Roy, 2013. "Early warning systems for currency crises: A multivariate extreme value approach," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 151-171.
    47. Pozo, Susan & Amuedo-Dorantes, Catalina, 2003. "Statistical distributions and the identification of currency crises," Journal of International Money and Finance, Elsevier, vol. 22(4), pages 591-609, August.
    48. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:phsmap:v:520:y:2019:i:c:p:1-10 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:3:p:353-370. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.