IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2014-032.html

TEDAS - Tail Event Driven ASset Allocation

Author

Listed:
  • Härdle, Wolfgang Karl
  • Nasekin, Sergey
  • Lee, David Kuo Chuen
  • Fai, Phoon Kok

Abstract

Portfolio selection and risk management are very actively studied topics in quantitative finance and applied statistics. They are closely related to the dependency structure of portfolio assets or risk factors. The correlation structure across assets and opposite tail movements are essential to the asset allocation problem, since they determine the level of risk in a position. Correlation alone is not informative on the distributional details of the assets. By introducing TEDAS -Tail Event Driven ASset allocation, one studies the dependence between assets at different quantiles. In a hedging exercise, TEDAS uses adaptive Lasso based quantile regression in order to determine an active set of negative non-zero coefficients. Based on these active risk factors, an adjustment for intertemporal correlation is made. Finally, the asset allocation weights are determined via a Cornish-Fisher Value-at-Risk optimization. TEDAS is studied in simulation and a practical utility-based example using hedge fund indices.

Suggested Citation

  • Härdle, Wolfgang Karl & Nasekin, Sergey & Lee, David Kuo Chuen & Fai, Phoon Kok, 2014. "TEDAS - Tail Event Driven ASset Allocation," SFB 649 Discussion Papers 2014-032, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2014-032
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/103800/1/788644467.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhandari, Rishabh & Das, Sanjiv R., 2009. "Options on portfolios with higher-order moments," Finance Research Letters, Elsevier, vol. 6(3), pages 122-129, September.
    2. William Fung & David A. Hsieh, 2002. "Hedge-Fund Benchmarks: Information Content and Biases," Financial Analysts Journal, Taylor & Francis Journals, vol. 58(1), pages 22-34, January.
    3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arismendi, Juan & Genaro, Alan De, 2016. "A Monte Carlo multi-asset option pricing approximation for general stochastic processes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 75-99.
    2. repec:hum:wpaper:sfb649dp2014-032 is not listed on IDEAS
    3. Emeka Nkoro & Aham Kelvin Uko, 2016. "Exchange Rate and Inflation Volatility and Stock Prices Volatility: Evidence from Nigeria, 1986-2012," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(6), pages 1-4.
    4. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    5. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    6. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    7. Marfatia, Hardik A., 2017. "A fresh look at integration of risks in the international stock markets: A wavelet approach," Review of Financial Economics, Elsevier, vol. 34(C), pages 33-49.
    8. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    9. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    10. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    11. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    13. Adugna Lemi & Sisay Asefa, 2009. "Differential Impacts of Economic Volatility and Governance on Manufacturing and Non-Manufacturing Foreign Direct Investments: The Case of US Multinationals in Africa," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 35(3), pages 367-395.
    14. Zia-Ur- Rahman, 2019. "Influence of Excessive Expenditure of the Government in Perspective of Interest Rate and Money Circulation Which in Turn Affects the Growing Process in Pakistan," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 6(2), pages 120-129.
    15. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    16. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    17. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    18. Evrim Imer-Ertunga, 2011. "Global financing conditions and sovereign debt yields of emerging market countries," Applied Financial Economics, Taylor & Francis Journals, vol. 21(4), pages 207-215.
    19. Geoffrey Ngene & Kenneth A. Tah & Ali F. Darrat, 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 61-73, September.
    20. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    21. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2014-032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.