IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/1514.html
   My bibliography  Save this paper

Mass psychology in action: identification of social interaction effects in the German stock market

Author

Listed:
  • Lux, Thomas

Abstract

We use weekly survey data on short-term and medium-term sentiment of German investors to estimate the parameters of a stochastic model of opinion dynamics. The bivariate nature of our data set also allows us to explore the interaction between the two hypothesized opinion formation processes, while consideration of the simultaneous weekly changes of the stock index DAX enables us to study the influence of sentiment on returns within a behavioral model of boundedly rational traders. Technically, we extend the maximum likelihood framework for parameter estimation in agent-based models introduced by Lux (2009a) by generalizing it to bivariate and trivariate settings. As it turns out, short-term sentiment is governed by strong social interaction with abrupt changes of direction while medium-term sentiment is a slowly moving process with more moderate social interaction. The trivariate model can potentially predict stock returns out-of-sample on the base of medium-run sentiment at least if an apparently spurious influence from short-run sentiment is discarded.

Suggested Citation

  • Lux, Thomas, 2009. "Mass psychology in action: identification of social interaction effects in the German stock market," Kiel Working Papers 1514, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:1514
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/28342/1/598742158.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lux, Thomas, 2009. "Rational forecasts or social opinion dynamics? Identification of interaction effects in a business climate survey," Journal of Economic Behavior & Organization, Elsevier, vol. 72(2), pages 638-655, November.
    2. Kling, Gerhard & Gao, Lei, 2008. "Chinese institutional investors' sentiment," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(4), pages 374-387, October.
    3. Horst, Ulrich & Rothe, Christian, 2008. "Queuing, Social Interactions, And The Microstructure Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 12(2), pages 211-233, April.
    4. Creedy, John & Lye, Jenny & Martin, Vance L, 1996. "A Non-linear Model of the Real US-UK Exchange Rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 669-686, Nov.-Dec..
    5. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    6. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    7. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    8. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    9. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    10. Lux, Thomas, 2008. "Sentiment dynamics and stock returns: the case of the German stock market," Kiel Working Papers 1470, Kiel Institute for the World Economy (IfW Kiel).
    11. Bernd Pape, 2007. "Asset allocation and multivariate position based trading," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 163-193, December.
    12. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    13. Thomas Lux, 2009. "Rational Forecasts or Social Opinion Dynamics? Identification of Interaction Effects in a Business Climate Survey," Post-Print hal-00720175, HAL.
    14. Gregory W. Brown & Michael T. Cliff, 2005. "Investor Sentiment and Asset Valuation," The Journal of Business, University of Chicago Press, vol. 78(2), pages 405-440, March.
    15. Wang, Yaw-Huei & Keswani, Aneel & Taylor, Stephen J., 2006. "The relationships between sentiment, returns and volatility," International Journal of Forecasting, Elsevier, vol. 22(1), pages 109-123.
    16. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    17. Brown, Gregory W. & Cliff, Michael T., 2004. "Investor sentiment and the near-term stock market," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 1-27, January.
    18. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lux, Thomas, 2009. "Rational forecasts or social opinion dynamics? Identification of interaction effects in a business climate survey," Journal of Economic Behavior & Organization, Elsevier, vol. 72(2), pages 638-655, November.
    2. Jaba Ghonghadze & Thomas Lux, 2012. "Modelling the dynamics of EU economic sentiment indicators: an interaction-based approach," Applied Economics, Taylor & Francis Journals, vol. 44(24), pages 3065-3088, August.
    3. Thomas Lux, 2009. "Rational Forecasts or Social Opinion Dynamics? Identification of Interaction Effects in a Business Climate Survey," Post-Print hal-00720175, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas, 2012. "Estimation of an agent-based model of investor sentiment formation in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1284-1302.
    2. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    3. Nicolas, Maxime L.D., 2022. "Estimating a model of herding behavior on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    4. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    5. Zhenxi Chen & Thomas Lux, 2018. "Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.
    6. Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.
    7. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    8. Jørgen Vitting Andersen & Ioannis Vrontos & Petros Dellaportas & Serge Galam, 2014. "Communication impacting financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00982959, HAL.
    9. Yamamoto, Ryuichi & Hirata, Hideaki, 2013. "Strategy switching in the Japanese stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 2010-2022.
    10. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    11. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    13. Ghonghadze, Jaba & Lux, Thomas, 2015. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," FinMaP-Working Papers 38, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    14. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    15. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    16. Catalano, Michele & Di Guilmi, Corrado, 2019. "Uncertainty, rationality and complexity in a multi-sectoral dynamic model: The dynamic stochastic generalized aggregation approach," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 117-144.
    17. Morales-Arias, Leonardo & Moura, Guilherme V., 2013. "Adaptive forecasting of exchange rates with panel data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 493-509.
    18. Schütz, Gunter M. & de Almeida Prado, Fernando Pigeard & Harris, Rosemary J. & Belitsky, Vladimir, 2009. "Short-time behaviour of demand and price viewed through an exactly solvable model for heterogeneous interacting market agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4126-4144.
    19. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.

    More about this item

    Keywords

    Opinion formation; social interaction; investor sentiment;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:1514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.