IDEAS home Printed from https://ideas.repec.org/p/zbw/fisisi/s32014.html
   My bibliography  Save this paper

A brighter future? Quantifying the rebound effect in energy efficient lighting

Author

Listed:
  • Schleich, Joachim
  • Mills, Bradford
  • Dütschke, Elisabeth

Abstract

This paper quantifies the direct rebound effects associated with the switch from incandescent lamps (ILs) or halogen bulbs to more energy efficient compact fluorescent lamps (CFLs) or light emitting diodes (LEDs) using a large nationally representative survey of German households. The direct rebound effect is measured as the elasticity of useful lighting demand with respect to changes in energy efficient lamps. In particular, the rebound effect is decomposed into changes in lamp luminosity and burn time. On average, more efficient replacement bulbs are 23% brighter and burn about 6.5 minutes per day longer than replaced bulbs. For the most frequent (modal) bulb switch, i.e. the replacement of the main bulb in the living or dining room, luminosity increases by 10% and burn time increases by 9 minutes per day. For the average bulb, the associated total direct rebound effect is estimated at 6.3%. The larger part (around 60%) of this rebound effect results from increases in bulb luminosity. For the modal bulb the total direct rebound effect is smaller at 2.6%, with around 60% attributable to an increase in burn time. Average and modal bulb differences suggest that the magnitude to the rebound effect may decrease with intensity of initial bulb use. The magnitude of the direct rebound and the relative contributions of changes in luminosity and burn time also tend to differ by initial bulb type and by replacement bulb type. Finally, about a third of the bulb switches entail a negative rebound effect, i.e. energy savings are larger than expected if luminosity and burn time remained unchanged, highlighting significant heterogeneity in household responses to the adoption of energy efficient bulbs.

Suggested Citation

  • Schleich, Joachim & Mills, Bradford & Dütschke, Elisabeth, 2014. "A brighter future? Quantifying the rebound effect in energy efficient lighting," Working Papers "Sustainability and Innovation" S3/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
  • Handle: RePEc:zbw:fisisi:s32014
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/92411/1/778261174.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brookes, Len, 1990. "The greenhouse effect: the fallacies in the energy efficiency solution," Energy Policy, Elsevier, vol. 18(2), pages 199-201, March.
    2. J. Daniel Khazzoom, 1987. "Energy Saving Resulting from the Adoption of More Efficient Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-89.
    3. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    4. Scott, S., 1997. "Household energy efficiency in Ireland: A replication study of ownership of energy saving items," Energy Economics, Elsevier, vol. 19(2), pages 187-208, May.
    5. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    6. Roger Fouquet & Peter J.G. Pearson, 2012. "The Long Run Demand for Lighting:Elasticities and Rebound Effects in Different Phases of Economic Development," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    7. Manuel Frondel and Colin Vance, 2013. "Re-Identifying the Rebound: What About Asymmetry?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    8. Mills, Bradford F. & Schleich, Joachim, 2010. "Why don't households see the light?: Explaining the diffusion of compact fluorescent lamps," Resource and Energy Economics, Elsevier, vol. 32(3), pages 363-378, August.
    9. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    11. Corrado Di Maria & Susana Ferreira & Emiliya Lazarova, 2010. "Shedding Light On The Light Bulb Puzzle: The Role Of Attitudes And Perceptions In The Adoption Of Energy Efficient Light Bulbs," Scottish Journal of Political Economy, Scottish Economic Society, vol. 57(1), pages 48-67, February.
    12. Kumar, Arun & Jain, Sudhir K. & Bansal, N. K., 2003. "Disseminating energy-efficient technologies: a case study of compact fluorescent lamps (CFLs) in India," Energy Policy, Elsevier, vol. 31(3), pages 259-272, February.
    13. Wall, Rob & Crosbie, Tracey, 2009. "Potential for reducing electricity demand for lighting in households: An exploratory socio-technical study," Energy Policy, Elsevier, vol. 37(3), pages 1021-1031, March.
    14. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    15. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," Energy Economics, Elsevier, vol. 34(2), pages 461-467.
    16. Saunders, Harry D. & Tsao, Jeffrey Y., 2012. "Rebound effects for lighting," Energy Policy, Elsevier, vol. 49(C), pages 477-478.
    17. Howarth, Nicholas A.A. & Rosenow, Jan, 2014. "Banning the bulb: Institutional evolution and the phased ban of incandescent lighting in Germany," Energy Policy, Elsevier, vol. 67(C), pages 737-746.
    18. Aman, M.M. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A., 2013. "Analysis of the performance of domestic lighting lamps," Energy Policy, Elsevier, vol. 52(C), pages 482-500.
    19. Jeroen Bergh, 2011. "Energy Conservation More Effective With Rebound Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 43-58, January.
    20. Frondel, Manuel & Lohmann, Steffen, 2011. "The European Commission's light bulb decree: Another costly regulation?," Energy Policy, Elsevier, vol. 39(6), pages 3177-3181, June.
    21. repec:zbw:rwirep:0245 is not listed on IDEAS
    22. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    23. J. Daniel Khazzoom, 1989. "Energy Savings from More Efficient Appliances: A Rejoinder," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 157-166.
    24. Manuel Frondel & Jorg Peters & Colin Vance, 2008. "Identifying the Rebound: Evidence from a German Household Panel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 145-164.
    25. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2013. "Turning lights into flights: Estimating direct and indirect rebound effects for UK households," Energy Policy, Elsevier, vol. 55(C), pages 234-250.
    26. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    27. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    28. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.
    29. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assoumou, Edi & Marmorat, Jean-Paul & Roy, Valérie, 2015. "Investigating long-term energy and CO2 mitigation options at city scale: A technical analysis for the city of Bologna," Energy, Elsevier, vol. 92(P3), pages 592-611.
    2. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    3. Hunt, Lester C. & Ryan, David L., 2015. "Economic modelling of energy services: Rectifying misspecified energy demand functions," Energy Economics, Elsevier, vol. 50(C), pages 273-285.
    4. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    5. repec:gam:jsusta:v:10:y:2018:i:7:p:2404-:d:157195 is not listed on IDEAS
    6. Sibylle Braungardt & Rainer Elsland & Wolfgang Eichhammer, 2016. "The environmental impact of eco-innovations: the case of EU residential electricity use," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 213-228, April.
    7. repec:eee:rensus:v:81:y:2018:i:p2:p:2160-2180 is not listed on IDEAS
    8. repec:eee:ecolec:v:149:y:2018:i:c:p:21-39 is not listed on IDEAS
    9. repec:fis:journl:180104 is not listed on IDEAS
    10. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    11. repec:eee:rensus:v:77:y:2017:i:c:p:845-860 is not listed on IDEAS
    12. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    13. Blum, Bianca & Hübner, Julian & Milde, Adrian & Neumärker, Karl Justus Bernhard, 2018. "On the evidence of rebound effects in the lighting sector: Implications for promoting LED lighting," The Constitutional Economics Network Working Papers 05-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    14. Balta-Ozkan, Nazmiye & Le Gallo, Julie, 2018. "Spatial variation in energy attitudes and perceptions: Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2160-2180.
    15. repec:eee:appene:v:242:y:2019:i:c:p:1022-1035 is not listed on IDEAS
    16. Hediger, Cécile & Farsi, Mehdi & Weber, Sylvain, 2018. "Turn It Up and Open the Window: On the Rebound Effects in Residential Heating," Ecological Economics, Elsevier, vol. 149(C), pages 21-39.
    17. Dütschke, Elisabeth & Frondel, Manuel & Schleich, Joachim & Vance, Colin, 2018. "Moral licensing: Another source of rebound?," Ruhr Economic Papers 747, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    18. repec:gam:jsusta:v:11:y:2019:i:13:p:3548-:d:243600 is not listed on IDEAS

    More about this item

    Keywords

    rebound effect; lighting; energy efficiency; energy demand;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fisisi:s32014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: http://edirc.repec.org/data/isfhgde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.