IDEAS home Printed from https://ideas.repec.org/p/wrk/warwec/1048.html
   My bibliography  Save this paper

Optimal strategies for operating energy storage in an arbitrage market

Author

Listed:
  • Flatley, Lisa

    (Mathematics Institute, University of Warwick)

  • Mackay, Robert

    (Mathematics Institute, University of Warwick)

  • Waterson, Michael

    (Department of Economics, University of Warwick)

Abstract

We characterise profit-maximising operating strategies, over some time horizon, for an energy store which is trading in an arbitrage market. Our theory allows for leakage, operating inefficiencies and general cost functions. In the special case where the operating cost of a store depends only on its instantaneous power ouput (or input), we present an algorithm to determine the optimal strategies. A key feature is that this algorithm is localised in time, in the sense that the action of the store at a time only requires information about electricity prices over some subinterval of time.creation-date: 2014

Suggested Citation

  • Flatley, Lisa & Mackay, Robert & Waterson, Michael, 2014. "Optimal strategies for operating energy storage in an arbitrage market," The Warwick Economics Research Paper Series (TWERPS) 1048, University of Warwick, Department of Economics.
  • Handle: RePEc:wrk:warwec:1048
    as

    Download full text from publisher

    File URL: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/2014/twerp_1048_waterson.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grünewald, Philipp & Cockerill, Tim & Contestabile, Marcello & Pearson, Peter, 2011. "The role of large scale storage in a GB low carbon energy future: Issues and policy challenges," Energy Policy, Elsevier, vol. 39(9), pages 4807-4815, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monica Giulietti, Luigi Grossi, Elisa Trujillo Baute, and Michael Waterson, 2018. "Analyzing the Potential Economic Value of Energy Storage," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    2. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    3. Monica Giulietti & Luigi Grossi, 2013. "Revenues from storage in a competitive electricity market: Empirical evidence from Great Britain," Working Papers 2013/37, Institut d'Economia de Barcelona (IEB).
    4. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).
    6. Poudineh, Rahmatallah & Jamasb, Tooraj, 2014. "Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement," Energy Policy, Elsevier, vol. 67(C), pages 222-231.
    7. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    8. Ambrosio-Albala, P. & Upham, P. & Bale, C.S.E. & Taylor, P.G., 2020. "Exploring acceptance of decentralised energy storage at household and neighbourhood scales: A UK survey," Energy Policy, Elsevier, vol. 138(C).
    9. Edmunds, R.K. & Cockerill, T.T. & Foxon, T.J. & Ingham, D.B. & Pourkashanian, M., 2014. "Technical benefits of energy storage and electricity interconnections in future British power systems," Energy, Elsevier, vol. 70(C), pages 577-587.
    10. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    11. Taylor, Peter G. & Bolton, Ronan & Stone, Dave & Upham, Paul, 2013. "Developing pathways for energy storage in the UK using a coevolutionary framework," Energy Policy, Elsevier, vol. 63(C), pages 230-243.
    12. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    13. Cárdenas, Bruno & Swinfen-Styles, Lawrie & Rouse, James & Hoskin, Adam & Xu, Weiqing & Garvey, S.D., 2021. "Energy storage capacity vs. renewable penetration: A study for the UK," Renewable Energy, Elsevier, vol. 171(C), pages 849-867.
    14. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    15. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    16. McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
    17. Jianxiong Xiao & Chao Xiong & Wei Deng & Guihai Yu, 2022. "Evolution Features and Robustness of Global Photovoltaic Trade Network," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    18. Grünewald, Philipp H. & Cockerill, Timothy T. & Contestabile, Marcello & Pearson, Peter J.G., 2012. "The socio-technical transition of distributed electricity storage into future networks—System value and stakeholder views," Energy Policy, Elsevier, vol. 50(C), pages 449-457.
    19. Adeoye, Omotola & Spataru, Catalina, 2020. "Quantifying the integration of renewable energy sources in West Africa's interconnected electricity network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Margaret Nash (email available below). General contact details of provider: https://edirc.repec.org/data/dewaruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.