IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwppe/0506012.html
   My bibliography  Save this paper

On the equivalence of the Arrow impossibility theorem and the Brouwer fixed point theorem (forthcoming in ``Applied Mathematics and Computation''(Elsevier))

Author

Listed:
  • Yasuhito Tanaka

    (Doshisha University)

Abstract

We will show that in the case where there are two individuals and three alternatives (or under the assumption of free-triple property) the Arrow impossibility theorem for social welfare functions that there exists no social welfare function which satisfies transitivity, Pareto principle, independence of irrelevant alternatives, and has no dictator is equivalent to the Brouwer fixed point theorem on a 2-dimensional ball (circle).

Suggested Citation

  • Yasuhito Tanaka, 2005. "On the equivalence of the Arrow impossibility theorem and the Brouwer fixed point theorem (forthcoming in ``Applied Mathematics and Computation''(Elsevier))," Public Economics 0506012, University Library of Munich, Germany, revised 17 Jun 2005.
  • Handle: RePEc:wpa:wuwppe:0506012
    Note: Type of Document - pdf
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/pe/papers/0506/0506012.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lauwers, Luc, 2000. "Topological social choice," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 1-39, July.
    2. Chichilnisky, Graciela, 1979. "On fixed point theorems and social choice paradoxes," Economics Letters, Elsevier, vol. 3(4), pages 347-351.
    3. Gleb Koshevoy, 1997. "Homotopy properties of Pareto aggregation rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(2), pages 295-302.
    4. Yuliy M. Baryshnikov, 1997. "Topological and discrete social choice: in a search of a theory," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(2), pages 199-209.
    5. Chichilnisky, Graciela, 1982. "The topological equivalence of the pareto condition and the existence of a dictator," Journal of Mathematical Economics, Elsevier, vol. 9(3), pages 223-233, March.
    6. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    7. Luc Lauwers, 2004. "Topological manipulators form an ultrafilter," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 22(3), pages 437-445, June.
    8. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    9. Paras Mehta, 1997. "Topological methods in social choice: an overview," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(2), pages 233-243.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • D6 - Microeconomics - - Welfare Economics
    • D7 - Microeconomics - - Analysis of Collective Decision-Making
    • H - Public Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwppe:0506012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.