IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Generic Difference of Expected Vote Share and Probability of Victory Maximization in Simple Plurality Elections with Probabilistic Voters

Listed author(s):
  • John W. Patty

    (Carnegie Mellon University)

Registered author(s):

    In this paper I examine single member, simple plurality elections with n > 2 probabilistic voters and show that the maximization of expected vote share and maximization of probability of victory are “generically different” in a specific sense. More specifically, I first describe finite shyness (Anderson and Zame (2000)), a notion of genericity for infinite dimensional spaces. Using this notion, I show that, for any policy x in the interior of the policy space and any candidate j, the set of n-dimensional profiles of twice continuously differentiable probabilistic voting functions for which x simultaneously satisfies the first and second order conditions for maximization of j’s probability of victory and j’s expected vote share at x is finitely shy with respect to the set of n-dimensional profiles of twice continuously differentiable probabilistic voting functions for which x satisfies the first and second order conditions for maximization of j’s expected vote share.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by EconWPA in its series Public Economics with number 0502006.

    in new window

    Length: 25 pages
    Date of creation: 16 Feb 2005
    Handle: RePEc:wpa:wuwppe:0502006
    Note: Type of Document - pdf; pages: 25
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Mas-Colell,Andreu, 1990. "The Theory of General Economic Equilibrium," Cambridge Books, Cambridge University Press, number 9780521388702, March.
    2. repec:cup:apsrev:v:68:y:1974:i:01:p:135-152_23 is not listed on IDEAS
    3. Hinich, Melvin J., 1977. "Equilibrium in spatial voting: The median voter result is an artifact," Journal of Economic Theory, Elsevier, vol. 16(2), pages 208-219, December.
    4. Anderson Robert M. & Zame William R., 2001. "Genericity with Infinitely Many Parameters," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 1(1), pages 1-64, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wpa:wuwppe:0502006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.