IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpge/0402005.html
   My bibliography  Save this paper

Convexification of Stochastic Ordering

Author

Listed:
  • Darinka Dentcheva

    (Stevens Institute of Technology)

  • Andrzej Ruszczynski

    (Rutgers University)

Abstract

We consider sets defined by the usual stochastic ordering relation and by the second order stochastic dominance relation. Under fairy general assumptions we prove that in the space of integrable random variables the closed convex hull of the first set is equal to the second set.

Suggested Citation

  • Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Convexification of Stochastic Ordering," GE, Growth, Math methods 0402005, EconWPA, revised 05 Aug 2005.
  • Handle: RePEc:wpa:wuwpge:0402005
    Note: Type of Document - pdf; prepared on WinXP; to print on any;
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/ge/papers/0402/0402005.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ronald E. Gangnon & William N. King, 2002. "Minimum distance estimation of the distribution functions of stochastically ordered random variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 485-492.
    2. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    3. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, EconWPA, revised 07 Aug 2005.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pflug Georg Ch., 2006. "On distortion functionals," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-16, July.
    2. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, EconWPA, revised 07 Aug 2005.
    3. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    4. Pichler, Alois, 2013. "The natural Banach space for version independent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 405-415.
    5. Darinka Dentcheva & Andrzej Ruszczynski, 2005. "Inverse stochastic dominance constraints and rank dependent expected utility theory," GE, Growth, Math methods 0503001, EconWPA.

    More about this item

    Keywords

    Stochastic Dominance; Stochastic Ordering;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • D5 - Microeconomics - - General Equilibrium and Disequilibrium
    • D9 - Microeconomics - - Micro-Based Behavioral Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpge:0402005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.