IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpge/0309004.html
   My bibliography  Save this paper

Heuristic methods for cost-oriented assembly line balancing: a comparison on solution quality and computing time

Author

Listed:
  • Matthias Amen

    (University of Duisburg & Essen)

Abstract

This paper is focused on the solution quality and computing time requirements of heuristic methods for cost-oriented assembly line balancing. It is based on a recent paper (Amen, International Journal of Production Economics 68 (2000), which describes in detail the solution process of existent and two new heuristics. After a short review of the historic origin and the wideness of assembly line systems in present day industry, the paper emphasizes the economic view of production in order to cut down production cost. Results of a worst-case analysis concerning the solution quality and the computing time are presented. An interval for the worst-case-solution quality for most heuristic methods is given. The results of an experimental investigation show that the new priority rule "best change of idle cost" (Amen) achieves significantly better solutions than the existent priority rules. Furthermore, the new method "exact solution of sliding problem windows" (Amen) has been found to be the best heuristic method known so far.

Suggested Citation

  • Matthias Amen, 2003. "Heuristic methods for cost-oriented assembly line balancing: a comparison on solution quality and computing time," GE, Growth, Math methods 0309004, University Library of Munich, Germany, revised 09 Sep 2003.
  • Handle: RePEc:wpa:wuwpge:0309004
    Note: Type of Document - pdf; pages: 10 ; figures: 2 tables. Published in International Journal of Production Economics, Vol. 69, No. 3, 13 February 2001
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/ge/papers/0309/0309004.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Amen, Matthias, 2000. "An exact method for cost-oriented assembly line balancing," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 187-195, March.
    2. Amen, Matthias, 2000. "Heuristic methods for cost-oriented assembly line balancing: A survey," International Journal of Production Economics, Elsevier, vol. 68(1), pages 1-14, October.
    3. F. Brian Talbot & James H. Patterson & William V. Gehrlein, 1986. "A Comparative Evaluation of Heuristic Line Balancing Techniques," Management Science, INFORMS, vol. 32(4), pages 430-454, April.
    4. Anthony A. Mastor, 1970. "An Experimental Investigation and Comparative Evaluation of Production Line Balancing Techniques," Management Science, INFORMS, vol. 16(11), pages 728-746, July.
    5. Fred M. Tonge, 1965. "Assembly Line Balancing Using Probabilistic Combinations of Heuristics," Management Science, INFORMS, vol. 11(7), pages 727-735, May.
    6. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. James R. Jackson, 1956. "A Computing Procedure for a Line Balancing Problem," Management Science, INFORMS, vol. 2(3), pages 261-271, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gamberini, Rita & Grassi, Andrea & Rimini, Bianca, 2006. "A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem," International Journal of Production Economics, Elsevier, vol. 102(2), pages 226-243, August.
    2. Chen, Ruey-Shun & Lu, Kun-Yung & Tai, Pei-Hao, 2004. "Optimizing assembly planning through a three-stage integrated approach," International Journal of Production Economics, Elsevier, vol. 88(3), pages 243-256, April.
    3. Dashuang Li & Chaoyong Zhang & Xinyu Shao & Wenwen Lin, 2016. "A multi-objective TLBO algorithm for balancing two-sided assembly line with multiple constraints," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 725-739, August.
    4. Miralles, Cristobal & Garcia-Sabater, Jose Pedro & Andres, Carlos & Cardos, Manuel, 2007. "Advantages of assembly lines in Sheltered Work Centres for Disabled. A case study," International Journal of Production Economics, Elsevier, vol. 110(1-2), pages 187-197, October.
    5. Scholl, Armin & Becker, Christian, 2005. "A note on "An exact method for cost-oriented assembly line balancing"," International Journal of Production Economics, Elsevier, vol. 97(3), pages 343-352, September.
    6. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    7. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    8. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    9. Amen, Matthias, 2000. "Heuristic methods for cost-oriented assembly line balancing: A survey," International Journal of Production Economics, Elsevier, vol. 68(1), pages 1-14, October.
    10. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    11. Dolgui, A. & Ihnatsenka, I., 2009. "Branch and bound algorithm for a transfer line design problem: Stations with sequentially activated multi-spindle heads," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1119-1132, September.
    12. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    13. Amen, Matthias, 2006. "Cost-oriented assembly line balancing: Model formulations, solution difficulty, upper and lower bounds," European Journal of Operational Research, Elsevier, vol. 168(3), pages 747-770, February.
    14. Guschinskaya, Olga & Dolgui, Alexandre, 2009. "Comparison of exact and heuristic methods for a transfer line balancing problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 276-286, August.

    More about this item

    Keywords

    Assembly line balancing; Cost-oriented production planning; Heuristic methods;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • M12 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Personnel Management; Executives; Executive Compensation
    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpge:0309004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.