IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/68.html
   My bibliography  Save this paper

Estimation in Models of the Instantaneous Short Term Interest Rate By Use of a Dynamic Bayesian Algorithm

Author

Listed:

Abstract

This paper considers the estimation in models of the instantaneous short interest rate from a new perspective. Rather than using discretely compounded market rates as a proxy for the instantaneous short rate of interest, we set up the stochastic dynamics for the discretely compounded market observed rates and propose a dynamic Bayesian estimation algorithm (i.e. a filtering algorithm) for a time-discretised version of the resulting interest rate dynamics. The filter solution is computed via a further spatial discretization (quantization) and the convergence of the latter to its continuous counterpart is discussed in detail. The method is applied to simulated data and is found to give a reasonable estimate of the conditional density function and to be not too demanding computationally.

Suggested Citation

  • Ram Bhar & Carl Chiarella & Wolfgang Runggaldier, 2001. "Estimation in Models of the Instantaneous Short Term Interest Rate By Use of a Dynamic Bayesian Algorithm," Research Paper Series 68, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:68
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp68.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    3. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    4. Chapman, David A & Long, John B, Jr & Pearson, Neil D, 1999. "Using Proxies for the Short Rate: When Are Three Months Like an Instant?," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 763-806.
    5. Episcopos, Athanasios, 2000. "Further evidence on alternative continuous time models of the short-term interest rate," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 199-212, June.
    6. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    7. Carl Chiarella & Sara Pasquali & Wolfgang Runggaldier, 2001. "On Filtering in Markovian Term Structure Models (An Approximation Approach)," Research Paper Series 65, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. K. Ben Nowman, 1998. "Continuous-time short term interest rate models," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 401-407.
    9. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 85-107, March.
    10. Nowman, K B, 1997. " Gaussian Estimation of Single-Factor Continuous Time Models of the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 52(4), pages 1695-1706, September.
    11. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eckhard Platen & Wolfgang Runggaldier, 2004. "A Benchmark Approach to Filtering in Finance," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(1), pages 79-105, March.
    2. Carl Chiarella & Sara Pasquali & Wolfgang Runggaldier, 2001. "On Filtering in Markovian Term Structure Models (An Approximation Approach)," Research Paper Series 65, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Ram Bhar & Carl Chiarella & Hing Hung & Wolfgang Runggaldier, 2004. "The Volatility of the Instantaneous Spot Interest Rate Implied by Arbitrage Pricing - A Dynamic Bayesian Approach," Finance 0409002, EconWPA.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.