IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Pricing of Index Options Under a Minimal Market Model with Lognormal Scaling

This paper describes a two-factor model for a diversified market index using the growth optimal portfolio with a stochastic and possibly correlated intrinsic time scale. The index is modeled using a time transformed squared Bessel process of dimension four with a lognormal scaling factor for the time transformation. A consistent pricing and hedging framework is established by using the benchmark approach. here the numeraire is taken to be the growth optimal portfolio. Benchmarked traded prices appear as conditional expectations of future benchmarked prices under the real world probability measure. The proposed minimal market model with lognormal scaling produces the type of implied volatility term structures for European call nd put options typically observed in real markets. In addition, the prices of binary options and their deviations from corresponding Black-Scholes prices are examined.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.business.uts.edu.au/qfrc/research/research_papers/rp101.pdf
Download Restriction: no

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 101.

as
in new window

Length:
Date of creation: 01 Jun 2003
Date of revision:
Handle: RePEc:uts:rpaper:101
Contact details of provider: Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
  2. Sanjiv R. Das & Rangarajan K. Sundaram, 1998. "Of Smiles and Smirks: A Term-Structure Perspective," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-024, New York University, Leonard N. Stern School of Business-.
  3. Platen, Eckhard, 2000. "A minimal financial market model," SFB 373 Discussion Papers 2000,91, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  4. Schönbucher, Philpp J., . "A Market Model for Stochastic Implied Volatility," Discussion Paper Serie B 453, University of Bonn, Germany, revised May 1999.
  5. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, January.
  6. Eckhard Platen, 2003. "Diversified Portfolios in a Benchmark Framework," Research Paper Series 87, Quantitative Finance Research Centre, University of Technology, Sydney.
  7. Franks, Julian R & Schwartz, Eduardo S, 1991. "The Stochastic Behaviour of Market Variance Implied in the Prices of Index Options," Economic Journal, Royal Economic Society, vol. 101(409), pages 1460-75, November.
  8. Eckhard Platen, 2001. "Arbitrage in Continuous Complete Markets," Research Paper Series 72, Quantitative Finance Research Centre, University of Technology, Sydney.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:101. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.