IDEAS home Printed from
   My bibliography  Save this article

Pricing of index options under a minimal market model with log-normal scaling


  • David Heath
  • Eckhard Platen


This paper describes a two-factor model for a diversified market index using the growth optimal portfolio with a stochastic and possibly correlated intrinsic timescale. The index is modelled using a time transformed squared Bessel process with a log-normal scaling factor for the time transformation. A consistent pricing and hedging framework is established by using the benchmark approach. Here the numeraire is taken to be the growth optimal portfolio. Benchmarked traded prices appear as conditional expectations of future benchmarked prices under the real world probability measure. The proposed minimal market model with log-normal scaling produces the type of implied volatility term structures for European call and put options typically observed in real markets. In addition, the prices of binary options and their deviations from corresponding Black-Scholes prices are examined.

Suggested Citation

  • David Heath & Eckhard Platen, 2003. "Pricing of index options under a minimal market model with log-normal scaling," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 442-450.
  • Handle: RePEc:taf:quantf:v:3:y:2003:i:6:p:442-450 DOI: 10.1088/1469-7688/3/6/303

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 211-239, June.
    3. Platen, Eckhard, 2000. "A minimal financial market model," SFB 373 Discussion Papers 2000,91, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, June.
    5. Eckhard Platen, 2001. "Arbitrage in Continuous Complete Markets," Research Paper Series 72, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Schönbucher, Philpp J., "undated". "A Market Model for Stochastic Implied Volatility," Discussion Paper Serie B 453, University of Bonn, Germany, revised May 1999.
    7. Franks, Julian R & Schwartz, Eduardo S, 1991. "The Stochastic Behaviour of Market Variance Implied in the Prices of Index Options," Economic Journal, Royal Economic Society, vol. 101(409), pages 1460-1475, November.
    8. Eckhard Platen, 2003. "Diversified Portfolios in a Benchmark Framework," Research Paper Series 87, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Eckhard Platen, 2004. "A Benchmark Framework for Risk Management," World Scientific Book Chapters,in: Stochastic Processes And Applications To Mathematical Finance, chapter 15, pages 305-335 World Scientific Publishing Co. Pte. Ltd..
    2. Eckhard Platen, 2004. "Diversified Portfolios with Jumps in a Benchmark Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(1), pages 1-22, March.
    3. Eckhard Platen, 2003. "Pricing and Hedging for Incomplete Jump Diffusion Benchmark Models," Research Paper Series 110, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. David Heath & Eckhard Platen, 2006. "Local volatility function models under a benchmark approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 197-206.
    5. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:3:y:2003:i:6:p:442-450. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.