IDEAS home Printed from
   My bibliography  Save this paper

Visualizing Influential Observations in Dependent Data


  • Genton, Mark G.
  • Ruiz-Gazen, Anne


We introduce the hair-plot to visualize influential observations in dependent data. It consists of all trajectories of the value of an estimator when each observation is modified in turn by an additive perturbation. We define two measures of influence: the local influence which describes the rate of departure from the original estimate due to a small perturbation of each observation; and the asymptotic influence which indicates the influence on the original estimate of the most extreme contamination for each observation. The cases of estimators defined as quadratic forms or ratios of quadratic forms are investigated in detail. Sample autocovariances, covariograms and variograms belong to the first case. Sample autocorrelations, correlograms, and indices of spatial autocorrelation such as Moran’s I belong to the second case. We illustrate our approach on various datasets from time series analysis and spatial statistics.

Suggested Citation

  • Genton, Mark G. & Ruiz-Gazen, Anne, 2009. "Visualizing Influential Observations in Dependent Data," TSE Working Papers 09-051, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:22176

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    1. Gorsich, David J. & Genton, Marc G. & Strang, Gilbert, 2002. "Eigenstructures of Spatial Design Matrices," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 138-165, January.
    2. Genton, Marc G., 1999. "The correlation structure of the sample autocovariance function for a particular class of time series with elliptically contoured distribution," Statistics & Probability Letters, Elsevier, vol. 41(2), pages 131-137, January.
    3. Adelchi Azzalini & Marc G. Genton, 2008. "Robust Likelihood Methods Based on the Skew‐t and Related Distributions," International Statistical Review, International Statistical Institute, vol. 76(1), pages 106-129, April.
    4. Hillier, Grant & Martellosio, Federico, 2006. "Spatial design matrices and associated quadratic forms: structure and properties," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 1-18, January.
    5. Marc G. Genton & André Lucas, 2003. "Comprehensive definitions of breakdown points for independent and dependent observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 81-94, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ronny Vallejos & Felipe Osorio & Diego Mancilla, 2015. "The codispersion map: a graphical tool to visualize the association between two spatial variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 298-314, August.
    2. Li, Hongfei & Calder, Catherine A. & Cressie, Noel, 2012. "One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 68-84.
    3. Martínez-Hernández, Israel & Genton, Marc G. & González-Farías, Graciela, 2019. "Robust depth-based estimation of the functional autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 66-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
    2. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.
    3. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    4. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    5. Cizek, Pavel, 2008. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 687-696, June.
    6. Aquaro, M. & Čížek, P., 2013. "One-step robust estimation of fixed-effects panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 536-548.
    7. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    8. Pavel Cizek & Wolfgang Härdle, 2006. "Robust Econometrics," SFB 649 Discussion Papers SFB649DP2006-050, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Francisco J. Rubio & Yili Hong, 2016. "Survival and lifetime data analysis with a flexible class of distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1794-1813, August.
    10. Chiara Mussida & Maria Laura Parisi, 2016. "The effect of economic crisis on regional income inequality in Italy," DISCE - Quaderni del Dipartimento di Scienze Economiche e Sociali dises1614, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    11. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    12. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    13. Reinaldo B. Arellano-Valle, 2010. "On the information matrix of the multivariate skew-t model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 371-386.
    14. Luke A. Prendergast & Robert G. Staudte, 0. "When large n is not enough – Distribution-free interval estimators for ratios of quantiles," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 0, pages 1-17.
    15. Arellano-Valle, Reinaldo B. & Genton, Marc G. & Loschi, Rosangela H., 2009. "Shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 91-101, January.
    16. Olcay Arslan, 2010. "An alternative multivariate skew Laplace distribution: properties and estimation," Statistical Papers, Springer, vol. 51(4), pages 865-887, December.
    17. Cizek, P. & Aquaro, M., 2015. "Robust Estimation and Moment Selection in Dynamic Fixed-effects Panel Data Models," Discussion Paper 2015-002, Tilburg University, Center for Economic Research.
    18. Luca Greco, 2011. "Minimum Hellinger distance based inference for scalar skew-normal and skew-t distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 120-137, May.
    19. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    20. Luke A. Prendergast & Robert G. Staudte, 2017. "When large n is not enough – Distribution-free interval estimators for ratios of quantiles," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(3), pages 277-293, September.

    More about this item


    autocovariance; Moran's I; outlier;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:22176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.