IDEAS home Printed from https://ideas.repec.org/p/sfi/sfiwpa/500042.html
   My bibliography  Save this paper

Elements for a theory of financial risks

Author

Listed:
  • Jean-Philippe Bouchaud

    (Science & Finance, Capital Fund Management
    CEA Saclay;)

Abstract

Estimating and controlling large risks has become one of the main concern of financial institutions. This requires the development of adequate statistical models and theoretical tools (which go beyond the traditionnal theories based on Gaussian statistics), and their practical implementation. Here we describe three interrelated aspects of this program: we first give a brief survey of the peculiar statistical properties of the empirical price fluctuations. We then review how an option pricing theory consistent with these statistical features can be constructed, and compared with real market prices for options. We finally argue that a true `microscopic' theory of price fluctuations (rather than a statistical model) would be most valuable for risk assessment. A simple Langevin-like equation is proposed, as a possible step in this direction.

Suggested Citation

  • Jean-Philippe Bouchaud, 1998. "Elements for a theory of financial risks," Science & Finance (CFM) working paper archive 500042, Science & Finance, Capital Fund Management.
  • Handle: RePEc:sfi:sfiwpa:500042
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    2. Jean-Philippe Bouchaud & Rama Cont, 1998. "A Langevin approach to stock market fluctuations and crashes," Science & Finance (CFM) working paper archive 500027, Science & Finance, Capital Fund Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Svorenčík & F. Slanina, 2007. "Interacting gaps model, dynamics of order book, and stock-market fluctuations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(4), pages 453-462, June.
    2. Jean-Philippe Bouchaud & Marc Potters, 1998. "Back to basics: historical option pricing revisited," Science & Finance (CFM) working paper archive 500036, Science & Finance, Capital Fund Management.
    3. Z. Eisler & J. Kertész, 2006. "Size matters: some stylized facts of the stock market revisited," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 51(1), pages 145-154, May.
    4. F. Slanina, 2008. "Critical comparison of several order-book models for stock-market fluctuations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(2), pages 225-240, January.
    5. G. Bonanno & D. Valenti & B. Spagnolo, 2006. "Role of noise in a market model with stochastic volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 405-409, October.
    6. M. Boguñá & J. Masoliver, 2004. "Conditional dynamics driving financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 40(3), pages 347-352, August.
    7. M. Sysi-Aho & A. Chakraborti & K. Kaski, 2003. "Intelligent minority game with genetic crossover strategies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 34(3), pages 373-377, August.
    8. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfi:sfiwpa:500042. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/scfinfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.