IDEAS home Printed from
   My bibliography  Save this paper

Pricing American Options on Jump-Diffusion Processes using Fourier-Hermite Series Expansions


  • Andrew Ziogas
  • Carl Chiarella


This paper presents a numerical method for pricing American call options where the underlying asset price follows a jump-diffusion process. The method is based on the Fourier-Hermite series expansions of Chiarella, El-Hassan and Kucera (1999), which we extend to allow for Poisson jumps, in the case where the jump sizes are log-normally distributed. The series approximation is applied to both European and American call options, and algorithms are presented for calculating the option price in each case. Since the series expansions only require discretisation in time to be implemented, the resulting price approximations require no asset price interpolation, and are demonstrated to produce both accurate and efficient solutions when compared with alternative methods, such as numerical integration and the method of lines

Suggested Citation

  • Andrew Ziogas & Carl Chiarella, 2004. "Pricing American Options on Jump-Diffusion Processes using Fourier-Hermite Series Expansions," Computing in Economics and Finance 2004 177, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:177

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Amin, Kaushik I, 1993. " Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    3. Andrew Ziogas & Carl Chiarella, 2003. "McKean’s Method applied to American Call Options on Jump-Diffusion Processes," Computing in Economics and Finance 2003 39, Society for Computational Economics.
    4. Jarrow, Robert A & Rosenfeld, Eric R, 1984. "Jump Risks and the Intertemporal Capital Asset Pricing Model," The Journal of Business, University of Chicago Press, vol. 57(3), pages 337-351, July.
    5. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
    6. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    7. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    8. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
    9. Guy Barles & Julien Burdeau & Marc Romano & Nicolas Samsoen, 1995. "Critical Stock Price Near Expiration," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 77-95.
    10. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    11. Chandrasekhar Reddy Gukhal, 2001. "Analytical Valuation of American Options on Jump-Diffusion Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 97-115.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103 World Scientific Publishing Co. Pte. Ltd..
    14. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
    15. Siim Kallast & Andi Kivinukk, 2003. "Pricing and Hedging American Options Using Approximations by Kim Integral Equations," Review of Finance, Springer, vol. 7(3), pages 361-383.
    16. Ball, Clifford A & Torous, Walter N, 1985. " On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-173, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jean-Guy Simonato, 2011. "Johnson binomial trees," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1165-1176.
    2. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, "undated". "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    3. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & Olivier Scaillet, 2016. "Early exercise decision in American options with dividends, stochastic volatility and jumps," Papers 1612.03031,

    More about this item


    American options; Fourier-Hermite series expansions; jump-diffusion;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:177. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.