IDEAS home Printed from https://ideas.repec.org/p/ran/wpaper/wr-506.html

Are 'Webographic' or Attitudinal Questions Useful for Adjusting Estimates From Web Surveys Using Propensity Scoring?

Author

Listed:
  • Matthias Schonlau
  • Arthur Van Soest
  • Arie Kapteyn

Abstract

Inference from Web surveys may be affected by non-random selection of Web survey participants. One approach to reduce selection bias is to use propensity scores and a parallel phone survey. This approach uses demographic and additional so-called Webographic or lifestyle variables to balance observed differences between Web survey respondents and phone survey respondents. Here the authors investigate some of the Webographic questions used by Harris Interactive, a commercial company specializing in Web surveys. Their Webographic questions include choice of activities such as reading, sports and traveling and perceptions about what would constitute a violation of privacy. They use data from an existing probability sample of respondents over 40 who are interviewed over the phone, and a corresponding sample of respondents interviewed over the Web. They find that Webographic questions differentiate between on and offline populations differently than demographic questions. In general, propensity score adjustment of variables in the Web survey works quite well for a number of variables of interest (including home ownership and labor force participation). For two outcomes, (having emotional problems and often experiencing pain) the process of adjusting for demographic variables leads to the discovery of an instance of Simpson’s paradox, implying a differential mode effect or differential selection. They interpret this mainly as the result of a mode effect, where sensitive questions are more likely to receive a positive response over the Internet than over the phone.

Suggested Citation

  • Matthias Schonlau & Arthur Van Soest & Arie Kapteyn, 2007. "Are 'Webographic' or Attitudinal Questions Useful for Adjusting Estimates From Web Surveys Using Propensity Scoring?," Working Papers WR-506, RAND Corporation.
  • Handle: RePEc:ran:wpaper:wr-506
    as

    Download full text from publisher

    File URL: https://www.rand.org/content/dam/rand/pubs/working_papers/2007/RAND_WR506.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    2. Richard Valliant & Jill A. Dever, 2011. "Estimating Propensity Adjustments for Volunteer Web Surveys," Sociological Methods & Research, , vol. 40(1), pages 105-137, February.
    3. repec:aia:aiaswp:wp76 is not listed on IDEAS
    4. Buil-Gil, David & Solymosi, Reka & Moretti, Angelo, 2019. "Non-parametric bootstrap and small area estimation to mitigate bias in crowdsourced data. Simulation study and application to perceived safety," SocArXiv 8hgjt, Center for Open Science.
    5. Luis Castro-Martín & Maria del Mar Rueda & Ramón Ferri-García, 2020. "Inference from Non-Probability Surveys with Statistical Matching and Propensity Score Adjustment Using Modern Prediction Techniques," Mathematics, MDPI, vol. 8(6), pages 1-19, June.
    6. Stéphane Legleye & Géraldine Charrance & Nicolas Razafindratsima & Nathalie Bajos & Aline Bohet & Caroline Moreau, 2018. "The Use of a Nonprobability Internet Panel to Monitor Sexual and Reproductive Health in the General Population," Sociological Methods & Research, , vol. 47(2), pages 314-348, March.
    7. Sunghee Lee & Richard Valliant, 2009. "Estimation for Volunteer Panel Web Surveys Using Propensity Score Adjustment and Calibration Adjustment," Sociological Methods & Research, , vol. 37(3), pages 319-343, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van de Walle, Dominique & Mu, Ren, 2007. "Fungibility and the flypaper effect of project aid: Micro-evidence for Vietnam," Journal of Development Economics, Elsevier, vol. 84(2), pages 667-685, November.
    2. de Brauw, Alan & Gilligan, Daniel O. & Hoddinott, John & Roy, Shalini, 2014. "The Impact of Bolsa Família on Women’s Decision-Making Power," World Development, Elsevier, vol. 59(C), pages 487-504.
    3. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Matias Busso & Patrick Kline, 2008. "Do Local Economic Development Programs Work? Evidence from the Federal Empowerment Zone Program," Cowles Foundation Discussion Papers 1639, Cowles Foundation for Research in Economics, Yale University.
    5. Gunther Bensch & Jörg Peters, 2013. "Alleviating Deforestation Pressures? Impacts of Improved Stove Dissemination on Charcoal Consumption in Urban Senegal," Land Economics, University of Wisconsin Press, vol. 89(4), pages 676-698.
    6. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    7. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    8. Hairu Wang & Yukun Liu & Haiying Zhou, 2025. "Score test for unconfoundedness under a logistic treatment assignment model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(4), pages 517-533, August.
    9. Rajeev Dehejia, 2013. "The Porous Dialectic: Experimental and Non-Experimental Methods in Development Economics," WIDER Working Paper Series wp-2013-011, World Institute for Development Economic Research (UNU-WIDER).
    10. Futoshi Yamauchi & Yanyan Liu, 2013. "Impacts of an Early Stage Education Intervention on Students' Learning Achievement: Evidence from the Philippines," Journal of Development Studies, Taylor & Francis Journals, vol. 49(2), pages 208-222, February.
    11. Töpfer, Marina, 2017. "Detailed RIF decomposition with selection: The gender pay gap in Italy," Hohenheim Discussion Papers in Business, Economics and Social Sciences 26-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    12. Katie Meara & Francesco Pastore & Allan Webster, 2020. "The gender pay gap in the USA: a matching study," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 271-305, January.
    13. Gernandt, Johannes & Maier, Michael & Pfeiffer, Friedhelm & Rat-Wirtzler, Julie, 2006. "Distributional effects of the high school degree in Germany," ZEW Discussion Papers 06-088, ZEW - Leibniz Centre for European Economic Research.
    14. Malerba, Daniele, 2020. "Poverty alleviation and local environmental degradation: An empirical analysis in Colombia," World Development, Elsevier, vol. 127(C).
    15. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    16. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    17. Pablo Lavado & Gonzalo Rivera, 2016. "Identifying Treatment Effects with Data Combination and Unobserved Heterogeneity," Working Papers 79, Peruvian Economic Association.
    18. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    19. Jules Gazeaud & Victor Stephane, 2023. "Productive Workfare? Evidence from Ethiopia's Productive Safety Net Program," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 265-290, January.
    20. Grégory Verdugo & Henry Fraisse & Guillaume Horny, 2012. "Changes In Wage Inequality In France: The Impact Of Composition Effects (in French)," Working papers 370, Banque de France.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ran:wpaper:wr-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benson Wong (email available below). General contact details of provider: https://edirc.repec.org/data/lpranus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.