IDEAS home Printed from
   My bibliography  Save this paper

Semiparametric Estimation of Stochastic Frontiers A Bayesian Penalized Approach



Almost all previous approaches to estimating semiparametric frontier models, where the functional form for the production (cost) function is unknown, have been local nonparametric (ie. kernel) approaches. In this paper we use a penalized (ie. spline) approach. We show how this approach can be applied to a variety of frontier models, including panel models with fixed and random effects, within a Bayesian framework. We also apply our approach to different multivariate settings, including additive and additive with interaction models. The latter is a promising model because it is very flexible and does not suffer the severe curse of dimensionality problem common with fully nonparametric functions. We illustrate our method using a simulated example.

Suggested Citation

  • Gholamreza Hajargasht, 2003. "Semiparametric Estimation of Stochastic Frontiers A Bayesian Penalized Approach," CEPA Working Papers Series WP042003, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqcepa:04

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Park, B.U. & Simar, L., 1992. "Efficient Semiparametric Estimation in Stochastic Frontier Model," Papers 9201, Catholique de Louvain - Institut de statistique.
    2. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    3. Adams, Robert M & Berger, Allen N & Sickles, Robin C, 1999. "Semiparametric Approaches to Stochastic Panel Frontiers with Applications in the Banking Industry," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 349-358, July.
    4. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqcepa:04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (SOE IT). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.