IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Could We Have Predicted the Recent Downturn in Home Sales of the Four US Census Regions?

Listed author(s):
  • Rangan Gupta


    (Department of Economics, University of Pretoria)

  • Christian K. Tipoy


    (Department of Economics, University of Pretoria)

  • Sonali Das


    (LQM, CSIR, Pretoria)

This paper analyzes the ability of a random walk and, classical and Bayesian versions of autoregressive, vector autoregressive and vector error correction models in forecasting home sales for the four US census regions (Northeast, Middlewest, South, West), using quarterly data over the period of 2001:Q1 to 2004:Q3, based on an in-sample of 1976:Q1 till 2000:Q4. In addition, we also use our models to predict the downturn in the home sales of the four census regions over the period of 2004:Q4 to 2009:Q2, given that the home sales in all the four census regions peaked in 2005:Q3. Based on our analysis, we draw the following conclusions: (i) Barring the South, there always exists a Bayesian model which tends to outperform all other models in forecasting home sales over the out-of-sample horizon; (ii) When we expose our classical and ‘optimal’ Bayesian forecast models to predicting the peaks and declines in home sales, we find that barring the South again, our models did reasonably well in predicting the turning point exactly at 2005:Q3 or with a lead. In general, the fact that different models produce the best forecasting performance for different regions, highlights the fact that economic conditions prevailing at the start of the out-of-sample horizon are not necessarily the same across the regions, and, hence, vindicates our decision to look at regions rather than the economy as a whole. In addition, we also point out that there is no guarantee that the best performing model over the out-of-sample horizon is also well-suited in predicting the downturn in home sales.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by University of Pretoria, Department of Economics in its series Working Papers with number 200926.

in new window

Length: 21 pages
Date of creation: Dec 2009
Handle: RePEc:pre:wpaper:200926
Contact details of provider: Postal:

Phone: (+2712) 420 2413
Fax: (+2712) 362-5207
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:200926. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.