IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/200902.html
   My bibliography  Save this paper

The Blessing Of Dimensionality In Forecasting Real House Price Growth In The Nine Census Divisions Of The Us

Author

Listed:
  • Sonali Das

    () (CSIR, Pretoria)

  • Rangan Gupta

    () (Department of Economics, University of Pretoria)

  • Alain Kabundi

    () (Department of Economics and Econometrics, University of Johannesburg)

Abstract

This paper analyzes whether a wealth of information contained in 126 monthly series used by large-scale Bayesian Vector Autoregressive (LBVAR) models, as well as Factor Augmented Vector Autoregressive (FAVAR) models, either Bayesian or classical, can prove to be more useful in forecasting real house price growth rate of the nine census divisions of the US, compared to the small-scale VAR models, that merely use the house prices. Using the period of 1991:02 to 2000:12 as the in-sample period and 2001:01 to 2005:06 as the out-of-sample horizon, we compare the forecast performance of the alternative models for one- to twelve–months ahead forecasts. Based on the average Root Mean Squared Error (RMSEs) for one- to twelve–months ahead forecasts, we find that the alternative FAVAR models outperform the other models in eight of the nine census divisions.

Suggested Citation

  • Sonali Das & Rangan Gupta & Alain Kabundi, 2009. "The Blessing Of Dimensionality In Forecasting Real House Price Growth In The Nine Census Divisions Of The Us," Working Papers 200902, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:200902
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles Rahal, 2015. "House Price Forecasts with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    2. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    3. John McDonald & Houston Stokes, 2013. "Monetary Policy and the Housing Bubble," The Journal of Real Estate Finance and Economics, Springer, vol. 46(3), pages 437-451, April.
    4. Rangan Gupta & Marius Jurgilas & Alain Kabundi & Stephen M. Miller, 2011. "Monetary policy and housing sector dynamics in a large-scale Bayesian vector autoregressive model," International Journal of Strategic Property Management, Taylor & Francis Journals, vol. 16(1), pages 1-20, August.
    5. Rangan Gupta & Alain Kabundi, 2010. "The effect of monetary policy on house price inflation: A factor augmented vector autoregression (FAVAR) approach," Journal of Economic Studies, Emerald Group Publishing, vol. 37(6), pages 616-626, November.
    6. Goodness C. Aye & Rangan Gupta, 2013. "Forecasting Real House Price of the U.S.: An Analysis Covering 1890 to 2012," Working Papers 201362, University of Pretoria, Department of Economics.
    7. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
    8. Nan-Kuang Chen & Han-Liang Cheng & Ching-Sheng Mao, 2014. "Identifying and forecasting house prices: a macroeconomic perspective," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2105-2120, December.
    9. Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.

    More about this item

    Keywords

    Dynamic Factor Model; BVAR; Forecast Accuracy;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:200902. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta). General contact details of provider: http://edirc.repec.org/data/decupza.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.