IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

VOCs’s Cost functions in the Design of Emission Abatement Strategies

Listed author(s):
  • Mariam, Yohannes
  • Barre, Mike

VOCs and NOx are the primary precursors in the formation of ground-level ozone (SMOG). The rate of formation is a function of concentrations, temperature and sunlight strength. Both pollutants as well as the ozone itself can be transported over very long distances. Therefore, it can affect regions that are close or far from the sources of emissions. In fact approximately 50% of the ozone problem found in the Windsor - Quebec corridor can be attributed to US emissions. Ozone can affect the health and productivity of humans, crops, forests and other ecosystems. It is now recognized that there is no thresh-hold level below which no effects are felt. Strategies to reduce emission of VOCs involve either cost or emission optimization. Cost optimization requires the availability of abatement cost functions. The current study presents methodologies to derive cost functions for VOCs in Canada. Abatement cost functions are mathematical representations of discrete emission reduction points and their corresponding total annualized cost. The objective for which cost functions are derived determines the procedure employed in deriving cost functions. In this study, cost functions are derived based on cost estimates from engineering models by analyzing plant level data on end of pipe abatement technologies and their related costs. Emissions of VOCs were gathered by plant, by sector, by region and nationally. Commonly used, VOCs control technologies were identified. Engineering cost models were used to generate total annualized costs and the corresponding emission reduction for individual plants. The Statistical Package for Social Sciences (SPSS) software was used to fit different functional forms to the total annualized cost and removal data. Four kinds of cost functions were derived. These include national, regional, sectoral and plant specific cost functions. The results showed that cost functions derived for the four categories indicated above, can be represented by different types of curves such as exponential, quadratic or even power. These curves could be used to facilitate the design of bilateral or multilateral, national, inter-provincial, or intra-provincial air pollution management strategies. The uses of these cost functions in pollution abatement not only treat countries, regions, sectors or plants equitably but also produce realistic cost data compared to average cost data. Furthermore, these functions could be incorporated into an integrated assessment model so that the resulting emission abatement strategies would cost the industry and/or the public minimum amount.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 658.

in new window

Date of creation: 1996
Date of revision: 1996
Handle: RePEc:pra:mprapa:658
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Ellis, J. Hugh, 1990. "Integrating multiple long-range transport models into optimization methodologies for acid rain policy analysis," European Journal of Operational Research, Elsevier, vol. 46(3), pages 313-321, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:658. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.