IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v101y1997i2p285-305.html
   My bibliography  Save this article

Estimated stochastic programs with chance constraints

Author

Listed:
  • Growe, Nicole

Abstract

No abstract is available for this item.

Suggested Citation

  • Growe, Nicole, 1997. "Estimated stochastic programs with chance constraints," European Journal of Operational Research, Elsevier, vol. 101(2), pages 285-305, September.
  • Handle: RePEc:eee:ejores:v:101:y:1997:i:2:p:285-305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(96)00398-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    2. Ellis, J. Hugh, 1990. "Integrating multiple long-range transport models into optimization methodologies for acid rain policy analysis," European Journal of Operational Research, Elsevier, vol. 46(3), pages 313-321, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasios Kampas & Ben White, 2004. "Administrative Costs and Instrument Choice for Stochastic Non-point Source Pollutants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(2), pages 109-133, February.
    2. Kampas, Athanasios & White, Ben, 2003. "Probabilistic programming for nitrate pollution control: Comparing different probabilistic constraint approximations," European Journal of Operational Research, Elsevier, vol. 147(1), pages 217-228, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    2. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    3. Hermann Held, 2019. "Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 247-261, January.
    4. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    5. Odetayo, Babatunde & MacCormack, John & Rosehart, William D. & Zareipour, Hamidreza, 2017. "A sequential planning approach for Distributed generation and natural gas networks," Energy, Elsevier, vol. 127(C), pages 428-437.
    6. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    7. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    8. Jana, R.K. & Sharma, Dinesh K. & Chakraborty, B., 2016. "A hybrid probabilistic fuzzy goal programming approach for agricultural decision-making," International Journal of Production Economics, Elsevier, vol. 173(C), pages 134-141.
    9. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    10. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    11. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    12. Xu, M. & Zhuan, X., 2013. "Optimal planning for wind power capacity in an electric power system," Renewable Energy, Elsevier, vol. 53(C), pages 280-286.
    13. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    14. Torkamani, Javad, 2005. "Using a whole-farm modelling approach to assess prospective technologies under uncertainty," Agricultural Systems, Elsevier, vol. 85(2), pages 138-154, August.
    15. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Other publications TiSEM ab77f6f2-248a-42f1-bde1-0, Tilburg University, School of Economics and Management.
    16. Alexander Engau, 2017. "Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Optimization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 119-134, January.
    17. Kögl, H., 1978. "Integrierte Finanz- und Investitionsplanung unter Unsicherheit," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 15.
    18. Gössinger, Ralf & Helmke, Hanna & Kaluzny, Michael, 2017. "Condition-based release of maintenance jobs in a decentralised production-maintenance system – An analysis of alternative stochastic approaches," International Journal of Production Economics, Elsevier, vol. 193(C), pages 528-537.
    19. R. Fourer & H. Gassmann & J. Ma & R. Martin, 2009. "An XML-based schema for stochastic programs," Annals of Operations Research, Springer, vol. 166(1), pages 313-337, February.
    20. Cinzia Colapinto & Raja Jayaraman & Fouad Ben Abdelaziz & Davide La Torre, 2020. "Environmental sustainability and multifaceted development: multi-criteria decision models with applications," Annals of Operations Research, Springer, vol. 293(2), pages 405-432, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:101:y:1997:i:2:p:285-305. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.